English

प्रारंभिक पंक्ति संक्रिया R1 → R1 – 3R2 का प्रयोग आव्यूह समीकरण [4233]=[1203][2011], में करने पर हमें प्राप्त होता है। - Mathematics (गणित)

Advertisements
Advertisements

Question

प्रारंभिक पंक्ति संक्रिया R1 → R1 – 3R2 का प्रयोग आव्यूह समीकरण  `[(4, 2),(3, 3)] = [(1, 2),(0, 3)] [(2, 0),(1, 1)]`, में करने पर हमें प्राप्त होता है।

Options

  • `[(-5, -7),(3, 3)] = [(1, -7),(0, 3)] [(2, 0),(1, 1)]`

  • `[(-5, -7),(3, 3)] = [(1, 2),(0, 3)] [(-1, -3),(1, 1)]`

  • `[(-5, -7),(3, 3)] = [(1, 2),(1, -7)] [(2, 0),(1, 1)]`

  • `[(4, 2),(-5, -7)] = [(1, 2),(-3, -3)] [(2, 0),(1, 1)]`

MCQ

Solution

सही उत्तर `[(-5, -7),(3, 3)] = [(1, -7),(0, 3)] [(2, 0),(1, 1)]`  है।

व्याख्या:

हमारे पास, `[(4, 2),(3, 3)] = [(1, 2),(0, 3)] [(2, 0),(1, 1)]`

प्रारंभिक पंक्ति परिवर्तन R1 → R1 – 3Rका उपयोग करना।

`[(-5, -7),(3, 3)] = [(1, -7),(0, 3)] [(2, 0),(1, 1)]`

shaalaa.com
आव्यूह
  Is there an error in this question or solution?
Chapter 3: आव्यूह - प्रश्नावली [Page 61]

APPEARS IN

NCERT Exemplar Mathematics [Hindi] Class 12
Chapter 3 आव्यूह
प्रश्नावली | Q 67 | Page 61

RELATED QUESTIONS

आव्यूह  A = [aij]2×2 की रचना कीजिए  जिसके अवयव aij इस प्रकार हैं कि aij = e2ix sin jx.


यदि A और B समान कोटि के दो सममित आव्यूह हैं, तब (AB′-BA′) है एक


आव्यूहों का योग तभी परिभाषित है जब प्रत्येक की कोटि ______ है।


समान कोटि के किन्हीं तीन आव्यूहों के लिए AB = AC ⇒ B = C 


यदि आव्यूह A = `[("a", 1, x),(2, sqrt(3), x^2 - y),(0, 5, (-2)/5)]`, तो A की कोटि लिखिए।


एक a2×2 आव्यूह की रचना कीजिए जिसके अवयव aij = `("i" - 2"j")^2/2` इस प्रकार से प्राप्त होते हैं।


एक 3 × 2 आव्यूह की रचना कीजिए जिसके अवयव aij = ei.x sinjx द्वारा दिए गए हैं।


यदि A = B हों तो a और b के मान ज्ञात कीजिए, जहाँ A = `[("a" + 4, 3"b"),(8, -6)]` और B = `[(2"a" + 2, "b"^2 + 2),(8, "b"^2 - 5"b")]` हैं।


यदि X = `[(3, 1, -1),(5, -2, -3)]` और Y = `[(2, 1, -1),(7, 2, 4)]` हों तो  ज्ञात कीजिए कि एक आव्यूह Z जो इस प्रकार हो कि X + Y + Z एक शून्य आव्यूह हो।


दर्शाइए कि A = `[(5, 3),(-1, -2)]` समीकरण A2 - 3A - 7I = O को संतुष्ट करता है और इसके प्रयोग से A-1 ज्ञात कीजिए।


यदि A = `[(1, 2),(4, 1),(5, 6)]` तथा B = `[(1, 2),(6, 4),(7, 3)]` हों तो सत्यापित कीजिए कि  (2A + B)′ = 2A′ + B′


यदि A = `[(1, 2),(-1, 3)]`, B = `[(4, 0),(1, 5)]`, C = `[(2, 0),(1, -2)]` तथा a = 4, b = –2 हों तो दिखाइए कि A + (B + C) = (A + B) + C


यदि A = `[(1, 2),(-1, 3)]`, B = `[(4, 0),(1, 5)]`, C = `[(2, 0),(1, -2)]` तथा a = 4, b = –2 हों तो दिखाइए कि A (BC) = (AB) C


यदि A = `[(1, 2),(-1, 3)]`, B = `[(4, 0),(1, 5)]`, C = `[(2, 0),(1, -2)]` तथा a = 4, b = –2 हों तो दिखाइए कि (A – B) C = AC – BC 


यदि A = `[(1, 2),(-1, 3)]`, B = `[(4, 0),(1, 5)]`, C = `[(2, 0),(1, -2)]` तथा a = 4, b = –2 हों तो दिखाइए कि (A – B)T = AT – BT 


यदि A = `[(costheta, sintheta),(-sintheta, costheta)]` तो दिखाइए कि A2 = `[(cos2theta, sin2theta),(-sin2theta, cos2theta)]`


प्रारंभिक पंक्ति संक्रियाओं से निम्नलिखित आव्यूह का व्युत्क्रम (यदि संभव हो तो) ज्ञात कीजिए:

`[(1, 3),(-5, 7)]`


यदि `3[("a", "b"),("c", "d")] = [("a", 6),(-1, 2"d")] + [(4, "a" + "b"),("c" + "d", 3)]` हो तो a, b, c और d के मान ज्ञात कीजिए।


यदि A = `[(0, 2y, z),(x, y, -z),(x, -y, z)]` इस प्रकार हो कि A′ = A–1 तो x, y तथा z के मान ज्ञात कीजिए।


आव्यूह `[(2, 3, 1),(1, -1, 2),(4, 1, 2)]` को एक सममित तथा एक विषम सममित आव्यूह के योग के रूप में लिखिए।


यदि आव्यूह A = [aij]2×2 इस प्रकार है कि aij `[:( 1  "यदि i" ≠ "j" ),( 0  "यदि i" ≠ "j" ):]` तब A2 बराबर है।


एक आव्यूह जो आवश्यक नहीं कि वर्ग आव्यूह हो एक ______ आव्यूह कहलाता है।


यदि A एक सममित आव्यूह है तो A3 एक ______ आव्यूह होगा।


दो आव्यूह समान होते हैं यदि उनकी पंक्तियों तथा स्तंभों की संख्या समान हो।


यदि आव्यूह AB = O, तब A = O या B = O या दोनों A और B शून्य आव्यूह हैं।


यदि A और B समान कोटि के दो वर्ग आव्यूह हैं तब AB = BA है।


यदि समान कोटि के तीनों आव्यूह सममित हैं तब उनका योग भी सममित आव्यूह है।


यदि A और B समान कोटि के कोई दो आव्यूह हैं तब (AB)′ = A′B′


यदि (AB)′ = B′ A′, जहाँ A और B वर्ग आव्यूह नहीं है तब A के पंक्तियों की संख्या B के स्तंभों की संख्या के बराबर होगी तथा A के स्तभों की संख्या B के पंक्तियों की संख्या के बराबर होगी।


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×