English

यदि A = [240396] और B = [142813] हों तो क्या (AB)′ = B′A′ है? - Mathematics (गणित)

Advertisements
Advertisements

Question

यदि A = `[(2, 4, 0), (3, 9, 6)]` और B = `[(1, 4), (2, 8), (1, 3)]` हों तो क्या (AB)′ = B′A′ है?

Sum

Solution

यहाँ, A  = `[(2, 4, 0),(3, 9, 6)]`, B = `[(1, 4),(2, 8),(1, 3)]`

AB = `[(2, 4, 0),(3, 9, 6)] [(1, 4),(2, 8),(1, 3)]`

= `[(2 + 8 + 0, 8 + 32 + 0),(3 + 18 + 6, 12 + 72 + 18)]`

= `[(10, 40),(27, 102)]`

L.H.S. (AB)' = `[(10, 27),(40, 102)]`

अब B = `[(1, 4),(2, 8),(1, 3)]`

⇒ B' = `[(1, 2, 1),(4, 8, 3)]`

A = `[(2, 4, 0),(3, 9, 6)]`

⇒ A' = `[(2, 3),(4, 90),(0, 6)]`

R.H.S. B'A' = `[(1, 2, 1),(4, 8, 3)][(2, 3),(4, 9),(0, 6)]`

= `[(2 + 8 + 0, 3 + 18 + 6),(8 + 32 + 0, 12  72 + 18)]`

=`[(10, 27),(40, 102)]`

= L.H.S.

इसलिए, L.H.S. = R.H.S.

shaalaa.com
आव्यूह
  Is there an error in this question or solution?
Chapter 3: आव्यूह - प्रश्नावली [Page 54]

APPEARS IN

NCERT Exemplar Mathematics [Hindi] Class 12
Chapter 3 आव्यूह
प्रश्नावली | Q 17 | Page 54

RELATED QUESTIONS

आव्यूह  A = [aij]2×2 की रचना कीजिए  जिसके अवयव aij इस प्रकार हैं कि aij = e2ix sin jx.


यदि A = `[(2, 3),(1, 2)]`, B = `[(1, 3, 2),(4, 3, 1)]`, C = `[(1),(2)]`, D = `[(4, 6, 8),(5, 7, 9)]`, हों तो A + B, B + C, C + D और B + D योगफलों में कौन से योगफल परिभाषित हैं।


यदि  `[(2x, 3)] [(1, 2),(-3, 0)] [(x),(8)]` = 0, हो तो x का मान निकालिए।


यदि A = `[(1, 3, 2), (2, 0, -1), (1, 2, 3)]`, तो दिखाइए कि A समीकरण A3 - 4A2 - 3A + 11I = O को संतुष्ट करता है।


यदि A = `[(2, 3),(-1, 2)]`, तो दिखाइए कि A2 – 4A + 7I = O इस परिणाम का उपयोग करके A5 का मान भी निकालिए।


आव्यूह A = `[(0, 0, 5),(0, 5, 0),(5, 0, 0)]` है।


दर्शाइए कि A = `[(5, 3),(-1, -2)]` समीकरण A2 - 3A - 7I = O को संतुष्ट करता है और इसके प्रयोग से A-1 ज्ञात कीजिए।


एक उदाहरण की सहायता से दिखाइए कि जब आव्यूह A ≠ O, B ≠ O हो तब भी AB = O आव्यूह हो।


यदि A = `[(1, 0, -1),(2, 1, 3 ),(0, 1, 1)]`  है तो सत्यापित कीजिए कि   A2 + A = A(A + I), जहाँ I एक 3 × 3  तत्समक आव्यूह है।


यदि A = `[(1, 2),(4, 1),(5, 6)]` तथा B = `[(1, 2),(6, 4),(7, 3)]` हों तो सत्यापित कीजिए कि  (2A + B)′ = 2A′ + B′


दिखाइए कि यदि A और B वर्ग आव्यूह हैं तथा AB = BA है, तब (A + B)2 = A2 + 2AB + B2


यदि A = `[(1, 2),(-1, 3)]`, B = `[(4, 0),(1, 5)]`, C = `[(2, 0),(1, -2)]` तथा a = 4, b = –2 हों तो दिखाइए कि (bA)T = bAT


यदि `[(xy, 4),(z + 6, x + y)] = [(8, w),(0, 6)]`, हो तो x, y, z और w के मान ज्ञात कीजिए।


यदि संभव हो तो प्रांरभिक पंक्ति संक्रियाओं के प्रयोग से निम्मलिखित आव्यूह का व्युत्क्रम ज्ञात कीजिए।

`[(2, 0, -1),(5, 1, 0),(0, 1, 3)]`


आव्यूह `[(2, 3, 1),(1, -1, 2),(4, 1, 2)]` को एक सममित तथा एक विषम सममित आव्यूह के योग के रूप में लिखिए।


यदि आव्यूह A = [aij]2×2 इस प्रकार है कि aij `[:( 1  "यदि i" ≠ "j" ),( 0  "यदि i" ≠ "j" ):]` तब A2 बराबर है।


यदि A एक m × n कोटि का आव्यूह है और B इस प्रकार का आव्यूह है कि AB′ और B′A दोनों ही परिभाषित हों तो आव्यूह B की कोटि होगी।


प्रारंभिक स्तंभ संक्रिया C2 → C2 – 2C1, का प्रयोग आव्यूह समीकरण

`[(1, -3),(2, 4)] = [(1, -1),(0, 1)] [(3, 1),(2, 4)]`, में करने पर हमें प्राप्त होता है।


यदि A एक विषम सममित आव्यूह है तो A2 एक ______ है।


यदि A और B समान कोटि के वर्ग आव्यूह हैं तो [k (A – B)]′ = ______


एक आव्यूह एक संख्या को निरूपित करता है।


असमान कोटि वाले आव्यूहों को घटाया नहीं जा सकता है।


यदि A और B दो समान कोटि के आव्यूह हैं तब A + B = B + A होता है।


एक स्तंभ आव्यूह का परिवर्त स्तंभ आव्यूह होता है।


यदि (AB)′ = B′ A′, जहाँ A और B वर्ग आव्यूह नहीं है तब A के पंक्तियों की संख्या B के स्तंभों की संख्या के बराबर होगी तथा A के स्तभों की संख्या B के पंक्तियों की संख्या के बराबर होगी।


किसी भी आव्यूह A के लिए AA′ सदैव सममित आव्यूह होता है।


यदि A विषम सममित आव्यूह है तो A2 सममित आव्यूह होगा।


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×