मराठी

यदि A = [124156] तथा B = [126473] हों तो सत्यापित कीजिए कि (2A + B)′ = 2A′ + B′ - Mathematics (गणित)

Advertisements
Advertisements

प्रश्न

यदि A = `[(1, 2),(4, 1),(5, 6)]` तथा B = `[(1, 2),(6, 4),(7, 3)]` हों तो सत्यापित कीजिए कि  (2A + B)′ = 2A′ + B′

बेरीज

उत्तर

यह देखते हुए: A = `[(1, 2),(4, 1),(5, 6)]` और B = `[(1, 2),(6, 4),(7, 3)]`

L.H.S. (2A + B)' = `[2((1, 2),(4, 1),(5, 6)) + ((1, 2),(6, 4),(7, 3))]^'`

= `[((2, 4),(8, 2),(10, 12)) + ((1, 2),(6, 4),(7, 3))]^'`

= `[(2 + 1, 4 + 2),(8 + 6, 2 + 4),(10 + 7, 12 + 3)]^'`

= `[(3, 6),(14, 6),(17, 15)]^'`

= `[(3, 14, 17),(6, 6, 15)]`

R.H.S. 2A' + B' = `2[(1, 2),(4, 1),(5, 6)]^' + [(1, 2),(6, 4),(7, 3)]^'`

= `2[(1, 4, 5),(2, 1, 6)] + [(1, 6, 7),(2, 4, 3)]`

= `[(2, 8, 10),(4, 2, 12)] + [(1, 6, 7),(2, 4, 3)]`

= `[(2 + 1, 8 + 6, 10 + 7),(4 + 2, 2 + 4, 12 + 3)]`

= `[(3, 14, 17),(6, 6, 15)]`

इसलिए, L.H.S. = R.H.S.

(2A + B)′ = 2A′ + B′ सत्यापित किया जाता है।

shaalaa.com
आव्यूह
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 3: आव्यूह - प्रश्नावली [पृष्ठ ५६]

APPEARS IN

एनसीईआरटी एक्झांप्लर Mathematics [Hindi] Class 12
पाठ 3 आव्यूह
प्रश्नावली | Q 28. (i) | पृष्ठ ५६

संबंधित प्रश्‍न

यदि  `[(2x, 3)] [(1, 2),(-3, 0)] [(x),(8)]` = 0, हो तो x का मान निकालिए।


यदि आव्यूह A = `[("a", 1, x),(2, sqrt(3), x^2 - y),(0, 5, (-2)/5)]`, तो A की कोटि लिखिए।


यदि `[(4),(1),(3)]` A = `[(-4, 8,4),(-1, 2, 1),(-3, 6, 3)]` हो तो A ज्ञात कीजिए।


यदि A = `[(3, -4),(1, 1),(2, 0)]` और B = `[(2, 1, 2),(1, 2, 4)]`, हो तो सत्यापित कीजिए कि (BA)2 ≠ B2A2 


यदि a = `[(1, 2), ( -2, 1)]`, b = `[(2, 3), (3, -4)]` और c = `[(1, 0), ( -1, 0)] `, हों तो सत्यापित कीजिए: (AB) C = A (BC)


यदि `[(2, 1, 3)] [(-1, 0, -1),(-1, 1, 0),(0, 1, 1)] [(1),(0),(-1)]` = A हो तो A ज्ञात कीजिए।


यदि A = `[(0, -1, 2),(4, 3, -4)]` और B = `[(4, 0),(1, 3),(2, 6)]`, हों तो सत्यापित कीजिए कि (A′)′ = A


यदि A = `[(0, -1, 2),(4, 3, -4)]` और B = `[(4, 0),(1, 3),(2, 6)]`, हों तो सत्यापित कीजिए कि (A′)′ = (AB)' = B'A'


दिखाइए कि यदि A और B वर्ग आव्यूह हैं तथा AB = BA है, तब (A + B)2 = A2 + 2AB + B2


यदि A = `[(1, 2),(-1, 3)]`, B = `[(4, 0),(1, 5)]`, C = `[(2, 0),(1, -2)]` तथा a = 4, b = –2 हों तो दिखाइए कि A + (B + C) = (A + B) + C


यदि A = `[(1, 2),(-1, 3)]`, B = `[(4, 0),(1, 5)]`, C = `[(2, 0),(1, -2)]` तथा a = 4, b = –2 हों तो दिखाइए कि A (BC) = (AB) C


यदि A = `[(1, 2),(-1, 3)]`, B = `[(4, 0),(1, 5)]`, C = `[(2, 0),(1, -2)]` तथा a = 4, b = –2 हों तो दिखाइए कि a(C – A) = aC – aA


यदि A = `[(1, 2),(-1, 3)]`, B = `[(4, 0),(1, 5)]`, C = `[(2, 0),(1, -2)]` तथा a = 4, b = –2 हों तो दिखाइए कि (A – B)T = AT – BT 


यदि A = `[(costheta, sintheta),(-sintheta, costheta)]` तो दिखाइए कि A2 = `[(cos2theta, sin2theta),(-sin2theta, cos2theta)]`


यदि A = `[(3, -5),(-4, 2)]` हो तो A2 – 5A – 14 ज्ञात कीजिए और फिर इसके प्रयोग से  A3 ज्ञात कीजिए।


यदि `3[("a", "b"),("c", "d")] = [("a", 6),(-1, 2"d")] + [(4, "a" + "b"),("c" + "d", 3)]` हो तो a, b, c और d के मान ज्ञात कीजिए।


यदि A = `[(1, 2),(4, 1)]` हो तो A2 + 2A + 7I ज्ञात कीजिए।


यदि A = `[(cosalpha, sinalpha),(-sinalpha, cosalpha)]` तथा A–1 = A′, हो तो  α का मान ज्ञात कीजिए।


यदि P(x) = `[(cosx, sinx),(-sinx, cosx)]`, हो तो दिखाइए कि P(x) . (y) = P(x + y) = P(y) . P(x)


यदि A = `[(0, 2y, z),(x, y, -z),(x, -y, z)]` इस प्रकार हो कि A′ = A–1 तो x, y तथा z के मान ज्ञात कीजिए।


आव्यूह `[(2, 3, 1),(1, -1, 2),(4, 1, 2)]` को एक सममित तथा एक विषम सममित आव्यूह के योग के रूप में लिखिए।


यदि आव्यूह A = [aij]2×2 इस प्रकार है कि aij `[:( 1  "यदि i" ≠ "j" ),( 0  "यदि i" ≠ "j" ):]` तब A2 बराबर है।


यदि A इस प्रकार कौ आव्यूह है कि A2 = I, तब (A – I)3 + (A + I)3 –7A बराबर होगा।


______ आव्यूह दोनों ही सममित तथा विषम सममित आव्यूह हैं।


दो विषम सममित आव्यूहों का योग सदैव ______ आव्यूह होता है।


आव्यूहों का गुणनफल, योग का ______ करता है।


यदि A और B समान कोटि के वर्ग आव्यूह हैं तो (AB)′ = ______


यदि A और B समान कोटि के सममित आव्यूह हें तो AB सममित आव्यूह होगा यदि और केवल यदि ______


दो आव्यूह समान होते हैं यदि उनकी पंक्तियों तथा स्तंभों की संख्या समान हो।


यदि समान कोटि के तीनों आव्यूह सममित हैं तब उनका योग भी सममित आव्यूह है।


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×