Advertisements
Advertisements
प्रश्न
यदि A = B हों तो a और b के मान ज्ञात कीजिए, जहाँ A = `[("a" + 4, 3"b"),(8, -6)]` और B = `[(2"a" + 2, "b"^2 + 2),(8, "b"^2 - 5"b")]` हैं।
उत्तर
दिया गया है कि A = B
⇒ `[("a" + 4, 3"b"),(8, -6)]` = `[(2"a" + 2, "b"^2 + 2),(8, "b"^2 - 5"b")]`
संबंधित तत्वों की बराबरी करने पर, हम प्राप्त करते हैं
a + 4 = 2a + 2
3b = b2 + 2
b2 – 5b = – 6
⇒ 2a – a = 2
b2 – 3b + 2 = 0
b2 – 5b + 6 = 0
∴ a = 2
∴ b2 – 3b + 2 = 0
⇒ b2 – 2b – b + 2 = 0
⇒ b(b – 2) – 1 (b – 2) = 0
⇒ (b – 1)(b – 2) = 0
∴ b = 1, 2
∴ b2 – 5b + 6 = 0
b2 – 3b – 2b + 6 = 0
⇒ b(b – 3) – 2(b – 3) = 0
⇒ (b – 2) (b – 3) = 0
⇒ b = 2, 3
लेकिन यहाँ 2 सामान्य है।
अत: a = 2 और b = 2 का मान।
APPEARS IN
संबंधित प्रश्न
आव्यूह A = [aij]2×2 की रचना कीजिए जिसके अवयव aij इस प्रकार हैं कि aij = e2ix sin jx.
सिद्ध कीजिए यदि एक आव्यूह सममित तथा विषम सममित दोनों ही हो तो वह एक शून्य आव्यूह है।
यदि A एक 3 × 3 कोटि का व्युत्क्रमणीय आव्यूह है तो दिखाइए कि किसी भी अदिश k (शून्येतर) के लिए kA व्युत्क्रमणीय है तथा `("kA")^-1 = 1/"k" "A"^-1`
आव्यूह A = `[(0, 0, 5),(0, 5, 0),(5, 0, 0)]` है।
यदि A और B समान कोटि के दो सममित आव्यूह हैं, तब (AB′-BA′) है एक
यदि A और B समान कोटि के आव्यूह हैं तब (3A -2B)′ = ______
आव्यूहों का योग तभी परिभाषित है जब प्रत्येक की कोटि ______ है।
आव्यूहों का व्यवकलन साहचर्य होता है।
समान कोटि के किन्हीं तीन आव्यूहों के लिए AB = AC ⇒ B = C
आव्यूह समीकरण `x[(2x, 2),(3, x)] + 2[(8, 5x),(4, 4x)] = 2[(x^2 + 8, 24),(10, 6x)]` को संतुष्ट करने वाले x के शून्येतर मान निकालिए।
दर्शाइए कि यदि `[(1, x, 1)] [(1, 3, 2),(2, 5,1),(15, 3, 2)] [(1),(2),(x)]` = O हो तो x का मान ज्ञात कीजिए।
दर्शाइए कि A = `[(5, 3),(-1, -2)]` समीकरण A2 - 3A - 7I = O को संतुष्ट करता है और इसके प्रयोग से A-1 ज्ञात कीजिए।
x तथा y के लिए हल कीजिए।
`x[(2),(1)] + y[(3),(5)] + [(-8),(-11)]` = O
यदि A = `[(2, 1)]`, B = `[(5, 3, 4),(8, 7, 6)]` और C = `[(-1, 2, 1),(1, 0, 2)]` हो तो सत्यापित कीजिए कि A(B + C) = (AB + AC)
यदि A = `[(0, -1, 2),(4, 3, -4)]` और B = `[(4, 0),(1, 3),(2, 6)]`, हों तो सत्यापित कीजिए कि (kA)' = (kA')
दिखाइए कि यदि A और B वर्ग आव्यूह हैं तथा AB = BA है, तब (A + B)2 = A2 + 2AB + B2
आव्यूह A ज्ञात कीजिए जो इस प्रकार हो कि `[(2, -1),(1, 0),(-3, 4)] "A" = [(-1, -8, -10),(1, -2, -5),(9, 22, 15)]`
यदि A = `[(cosalpha, sinalpha),(-sinalpha, cosalpha)]` तथा A–1 = A′, हो तो α का मान ज्ञात कीजिए।
यदि A तथा B समान कोटि के वर्ग आव्यूह हैं और B एक विषम सममित आव्यूह है तो दिखाइए कि A′BA एक विषम सममित आव्यूह है।
आव्यूह P = `[(0, 0, 4),(0, 4, 0),(4, 0, 0)]` है।
आव्यूह `[ (1, 0, 0 ), ( 0, 2, 0), (0, 0, 4 )]` एक
यदि A विषम सममित आव्यूह है तो kA (k कोई अदिश है) एक ______ है।
किसी भी कोटि के आव्यूहों को जोड़ा जा सकता है।
यदि A और B दो समान कोटि के आव्यूह हैं तब A + B = B + A होता है।
एक स्तंभ आव्यूह का परिवर्त स्तंभ आव्यूह होता है।
यदि समान कोटि के तीनों आव्यूह सममित हैं तब उनका योग भी सममित आव्यूह है।
यदि A और B समान कोटि के कोई दो आव्यूह हैं तब (AB)′ = A′B′
किसी भी आव्यूह A के लिए AA′ सदैव सममित आव्यूह होता है।