मराठी

यदि cos2θ = 0, तब |0cosθsinθcosθsinθ0sinθ0cosθ|2 = ______. - Mathematics (गणित)

Advertisements
Advertisements

प्रश्न

यदि cos2θ = 0, तब `|(0, costheta, sin theta),(cos theta, sin theta,0),(sin theta, 0, cos theta)|^2` = ______.

रिकाम्या जागा भरा

उत्तर

यदि cos2θ = 0, तब `|(0, costheta, sin theta),(cos theta, sin theta,0),(sin theta, 0, cos theta)|^2` = `underline(- 1/ sqrt(2))`

व्याख्या:

Δ = `|(0, costheta, sin theta),(cos theta, sin theta,0),(sin theta, 0, cos theta)|^2`

 = `0 - cos theta(costheta) + sintheta(0- sin^2theta)`

= `-(cos^3theta + sin^2theta)`

cos2θ = 0

⇒ 2θ = `pi/2`

⇒ θ = `pi/4`

∴ Δ = `-(cos^3  pi/4 + sin^3  pi/4)`

= `-((1/sqrt(2))^3 +(1/sqrt(2))^3)`

=`- 1/sqrt(2)`

shaalaa.com
सारणिक
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 4: सारणिक - प्रश्नावली [पृष्ठ ८१]

APPEARS IN

एनसीईआरटी एक्झांप्लर Mathematics [Hindi] Class 12
पाठ 4 सारणिक
प्रश्नावली | Q 41 | पृष्ठ ८१

संबंधित प्रश्‍न

निम्नलिखित सारणिक के मान ज्ञात कीजिए।

`abs ((3,-1,-2),(0,0,-1),(3,-5,0))`


निम्नलिखित सारणिक के मान ज्ञात कीजिए।

`abs ((2,-1,-2),(0,2,-1),(3,-5,0))`


x के मान ज्ञात कीजिए यदि `abs ((2,4),(5,1)) = abs ((2x, 4),(6, x))`


x के मान ज्ञात कीजिए यदि `abs ((2,3),(4,5)) = abs ((x, 3),(2x, 5))`


यदि `abs ((x, 2),(18, x)) = abs ((6,2),(18,6))` हो तो x बराबर है:


`[(cosalphacosbeta, cosalphasinbeta,-sinalpha),(-sinbeta,cosbeta,0),(sinalpha cosbeta,sinalphasinbeta,cosalpha)]` का मान ज्ञात कीजिए |


`[(x,y,x+y),(y,x+y,x),(x+y,x,y)]` का मान ज्ञात कीजिए।


`[(1,x,y),(1,x+y,y),(1,x,x+y)]` का मान ज्ञात कीजिए।


दिखाइए कि यदि सारणिक ∆ = `|(3, -2, sin3theta),(-7, 8, cos2theta),(-11, 14, 2)|` = 0 है तब sinθ = 0 या `1/2` होगा।


सारणिक ∆ = `|(cos(x + y), -sin(x + y), cos2y),(sinx, cosx, siny),(-cosx, sinx, cosy)|`, x से स्वतंत्र है।


सारणिक `|(1, 1, 1),(""^"n""C"_1, ""^("n" + 2)"C"_1, ""^("n" + 4)"C"_1),(""^"n""C"_2, ""^("n" + 2)"C"_2, ""^("n" + 4)"C"_2)|` = 8


यदि A = `[(0, 1, 3),(1, 2, x),(2, 3, 1)]`, A–1 = `[(1/2, -4, 5/2),(-1/2, 3, -3/2),(1/2, y, 1/2)]` तब x = 1, y = – 1


मान निकालिए- `|(0, xy^2, xz^2),(x^2y, 0, yz^2),(x^2z, zy^2, 0)|`


मान निकालिए- `|("a" - "b" - "c", 2"a", 2"a"),(2"b", "b" - "c" - "a", 2"b"),(2"c", 2"c", "c" - "a" - "b")|`


यदि एक समबाहु त्रिभुज के शीर्ष (x1, y1), (x2, y2), (x3, y3) तथा त्रिभुज की भुजाओं की लंबाई ‘a’ है तो सिद्ध कीजिए कि `|(x_1, y_1, 1),(x_2, y_2, 1),(x_3, y_3, 1)|^2 = (3"a"^4)/4`


दर्शाइए कि a के किसी भी मान के लिए बिंदु (a + 5, a – 4), (a – 2, a + 3) और (a, a) एक सरल रेखा में नहीं है।


आव्यूह विधि से समीकरण निकाय 3x + 2y – 2z = 3, x + 2y + 3z = 6, 2x – y + z = 2 को हल कीजिए।


एक त्रिभुज का क्षेत्रफल 9 वर्ग इकाई है जिसके शीर्ष (-3, 0), (3, 0) और (0, k) हैं तो k का मान होगा।


सारणिक `|("b"^2 - "ab", "b" - "c", "bc" - "ac"),("ab" - "a"^2, "a" - "b", "b"^2 - "ab"),("bc" - "ac", "c" - "a", "ab" - "a"^2)|` बराबर है।


अंतराल `pi/4  x ≤ pi/4` में सारणिक `|(sinx, cosx, cosx),(cosx, sinx, cosx),(cosx, cosx, sinx)|` = 0 के विभिन्‍न वास्तविक मूलों की संख्या है।


यदि A, B और C एक त्रिभुज के कोण हैं तो सारणिक

`|(-1, cos"C", cos"B"),(cos"C", -1, cos"A"),(cos"B", cos"A", -1)|` बराबर है।


यदि  f(x) = `|(0, x - "a", x - "b"),(x + "b", 0, x - "c"),(x + "b", x + "c", 0)|`, तब


एक सारणिक A की किसी पंक्ति के अवयवों और उनके संगत सहखंडों के गुणनफल का योग ______ के बराबर होता है।


`("aA")^-1 = 1/"a"  "A"^-1` जहाँ a एक वास्तविक संख्या है और A एक वर्ग आव्यूह है।


|A–1| ≠ |A|–1, जहाँ व्युत्क्रमणीय आव्यूह है।


`|(x + 1, x + 2, x + "a"),(x + 2, x + 3, x + "b"),(x + 3, x + 4, x + "c")|` = 0, जहाँ a, b, c, A.P में है।


यदि सारणिक `|(x + "a", "p" + "u", "l" + "f"),("y" + "b", "q" + "v", "m" + "g"),("z" + "c", "r" + "w", "n" + "h")|` को कोटि 3 के K सारणिकों में ऐसे विघटित किया जाए कि उनके प्रत्येक अवयव में केवल एक पद हो तब K का मान 8 है।


`|(1, 1, 1),(1, (1 + sintheta), 1),(1, 1, 1 + costheta)|` का अधिकतम मान `1/2` है।


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×