Advertisements
Advertisements
प्रश्न
यदि Y = {1, 2, 3, … 10}, तथा a समुच्चय Y के किसी अवयव को निरूपित करता है, तो उन समुच्चयों को लिखिए जिनके अंतर्विष्ट समस्त अवयव निम्नलिखित प्रतिबंधों (Conditions) को संतुष्ट करते हैं:
a ∈ Y परंतु a2 ∉ Y
उत्तर
दिए गए प्रश्न के अनुसार।
इसलिए, {a : a ∈ Y और a2 ∉ Y} = {4, 5, 6, 7, 8, 9, 10}।
APPEARS IN
संबंधित प्रश्न
पहचानें कि निम्नलिखित समुच्चय है या नहीं? अपने उत्तर का औचित्य बताइए।
J अक्षर से प्रारंभ होने वाले वर्ष के सभी महीनों का संग्रह।
पहचानें कि निम्नलिखित समुच्चय है या नहीं? अपने उत्तर का औचित्य बताइए।
भारत के दस सबसे अधिक प्रतिभाशाली लेखकों का संग्रह।
पहचानें कि निम्नलिखित समुच्चय है या नहीं? अपने उत्तर का औचित्य बताइए।
लेखक प्रेमचंद द्वारा लिखित उपन्यासों का संग्रह।
पहचानें कि निम्नलिखित समुच्चय है या नहीं? अपने उत्तर का औचित्य बताइए।
सभी सम पूर्णांकों का संग्रह।
निम्नलिखित समुच्चय को रोस्टर रूप में लिखिए:
F = BETTER शब्द के सभी अक्षरों का समुच्च्य
निम्नलिखित समुच्चय को समुच्चय निर्माण रूप में व्यक्त कीजिए:
{3, 6, 9, 12}
निम्नलिखित समुच्चय को समुच्चय निर्माण रूप में व्यक्त कीजिए:
{2, 4, 6, ….}
निम्नलिखित समुच्चय के सभी अवयवों (सदस्यों) को सूचीबद्ध कीजिए।
A = {x : x एक विषम प्राकृत संख्या है}
निम्नलिखित समुच्चय के सभी अवयवों (सदस्यों) को सूचीबद्ध कीजिए।
C = {x : x एक पूर्णांक है, x2 ≤ 4}
निम्नलिखित समुच्चय के सभी अवयवों (सदस्यों) को सूचीबद्ध कीजिए।
D = {x : x, LOYAL शब्द का एक अक्षर है}
यदि A = {1, 2, 3, 4}, B = {3, 4, 5, 6}, C = {5, 6, 7, 8} और D = {7, 8, 9, 10}, तो निम्नलिखित ज्ञात कीजिए:
B ∪ C ∪ D
किसी विद्यालय के 600 विद्यार्थियों के सर्वेक्षण से ज्ञात हुआ कि 150 विद्यार्थी चाय, 225 विद्यार्थी कॉफी तथा 100 विद्यार्थी चाय और कॉफी दोनों पीते हैं। ज्ञात कीजिए कि कितने विद्यार्थी न तो चाय पीते हैं और न कॉफी पीते हैं।
निम्नलिखित समुच्चय को रोस्टर रूप में लिखिए।
A = {x | x; 10 से छोटा एक धन पूर्णांक है और 2x - 1 एक विषम संख्या है}
बताइए कि निम्नलिखित कथन में से कौन से कथन सत्य और कौन से असत्य है। अपने उत्तर का औचित्य भी बतलाइए।
37 ∉ {x | x के तथ्यतः (exactly) दो धन गुणनखंड हैं}
बताइए कि निम्नलिखित कथन में से कौन से कथन सत्य और कौन से असत्य है। अपने उत्तर का औचित्य भी बतलाइए।
28 ∈ {y | y के समस्त धन गुणनखंडों का योगफल 2y है}
दिया है कि, E = {2, 4, 6, 8, 10} यदि n, E के किसी सदस्य (अवयव) को निरूपित करता है, तो निम्नलिखित द्वारा निरूपित सभी संख्याओं वाले समुच्चय लिखिए:
n2
मान लीजिए कि X = {1, 2, 3, 4, 5, 6} यदि n, X के किसी सदस्य को निरूपित करता है, तो निम्नलिखित को समुच्चय रूप में व्यक्त कीजिए
n + 5 = 8
निम्नलिखित समुच्चय को रोस्टर रूप में लिखिए:
F = {x | x4 – 5x2 + 6 = 0, x ∈ R}
यदि Y = {x | x संख्या 2p−1(2p − 1) का एक धनात्मक गुणनखंड है, जहाँ 2p − 1 एक अभाज्य संख्या है}, तो Y को रोस्टर रूप में लिखिए।
बताइए कि निम्नलिखित कथन में से कौन सत्य और कौन असत्य है। अपने उत्तर का औचित्य भी बताइए।
बताइए कि निम्नलिखित कथन में से कौन सत्य और कौन असत्य है। अपने उत्तर का औचित्य भी बताइए।
बताइए कि निम्नलिखित कथन में से कौन सत्य और कौन असत्य है। अपने उत्तर का औचित्य भी बताइए।
496 ∉ {y | y के समस्त धनात्मक गुणनखंडों का योगफल 2y है}
दिया है कि X = {1, 2, 3}, यदि n समुच्चय के X किसी सदस्य को निरूपित करता है, तो निम्नलिखित द्वारा निरूपित समस्त संख्याओं को अंतर्विष्ट (Contain) करने वाले समुच्चयों को लिखिए:
दिया है कि X = {1, 2, 3}, यदि n समुच्चय के X किसी सदस्य को निरूपित करता है, तो निम्नलिखित द्वारा निरूपित समस्त संख्याओं को अंतर्विष्ट (Contain) करने वाले समुच्चयों को लिखिए:
दिया है कि X = {1, 2, 3}, यदि n समुच्चय के X किसी सदस्य को निरूपित करता है, तो निम्नलिखित द्वारा निरूपित समस्त संख्याओं को अंतर्विष्ट (Contain) करने वाले समुच्चयों को लिखिए:
यदि Y = {1, 2, 3, … 10}, तथा a समुच्चय Y के किसी अवयव को निरूपित करता है, तो उन समुच्चयों को लिखिए जिनके अंतर्विष्ट समस्त अवयव निम्नलिखित प्रतिबंधों (Conditions) को संतुष्ट करते हैं: