मराठी

यूक्लिड की विभाजन एल्गोरिथ्म का प्रयोग करते हुए, ऐसी सबसे बड़ी संख्या ज्ञात कीजिए, जिससे 1251, 9377 और 15628 को भाग देने पर शेषफल क्रमशः 1, 2 और 3 प्राप्त हो। - Mathematics (गणित)

Advertisements
Advertisements

प्रश्न

यूक्लिड की विभाजन एल्गोरिथ्म का प्रयोग करते हुए, ऐसी सबसे बड़ी संख्या ज्ञात कीजिए, जिससे 1251, 9377 और 15628 को भाग देने पर शेषफल क्रमशः 1, 2 और 3 प्राप्त हो।

बेरीज

उत्तर

चूंकि, 1, 2 और 3 क्रमशः 1251, 9377 और 15628 के अवशेष हैं।

इस प्रकार, इन अवशेषों को संख्याओं से घटाने के बाद।

हमारे पास नंबर 1251 – 1 = 1250, 9377 – 2 = 9375 और 15628 – 3 = 15625 हैं जो आवश्यक संख्या से विभाज्य हैं।

अब, आवश्यक संख्या = HCF (1250, 9375, 15625)

यूक्लिड के डिवीजन एल्गोरिथ्म द्वारा,

a = bq + r .......(i) [∵ लाभांश = भाजक × भागफल + शेष]

चलो a = 15625 और b = 9375

15625 = 9375 × 1 + 6250 .......[समीकरण (i) से]

`\implies` 9375 = 6250 × 1 + 3125

`\implies` 6250 = 3125 × 2 + 0

∴ HCF(15625, 9375) = 3125

अब, हम c = 1250 और d = 3125 लेते हैं।

फिर फिर से Euclid के डिवीजन एल्गोरिथ्म का उपयोग करके, d = cq + r

`\implies` 3125 = 1250 × 2 + 625

`\implies` 1250 = 625 × 2 + 0

∴ HCF(1250, 9375, 15625) = 625

इसलिए, 625 सबसे बड़ी संख्या है जो क्रमशः 1251, 9377 और 15628 को विभाजित करती है, क्रमशः 1, 2 और 3 को छोड़कर।

shaalaa.com
यूक्लिड विभाजन प्रमेयिका
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 1: वास्तविक संख्याएँ - प्रश्नावली 1.3 [पृष्ठ ७]

APPEARS IN

एनसीईआरटी एक्झांप्लर Mathematics [Hindi] Class 10
पाठ 1 वास्तविक संख्याएँ
प्रश्नावली 1.3 | Q 9. | पृष्ठ ७

संबंधित प्रश्‍न

निम्नलिखित संख्याओं का HCF ज्ञात करने के लिए यूक्लिड विभाजन एल्गोरिथ्म का प्रयोग कीजिए:

867 और 255


दर्शाइए कि कोई भी धनात्मक विषम पूर्णांक 6q + 1 या 6q + 3 या 6q + 5 के रूप का होता है, जहाँ q कोई पूर्णांक है।


किसी परेड में 616 सदस्यों वाली एक सेना (आर्मी) की टुकड़ी को 32 सदस्यों वाले एक आर्मी बैंड के पीछे मार्च करना है। दोनों समूहों को समान संख्या वाले स्तंभों में मार्च करना है। उन स्तंभों की अधिकतम संख्या क्या है, जिसमें वे मार्च कर सकते हैं?


यूक्लिड विभाजन प्रमेयिका का प्रयोग करके दर्शाइए कि किसी धनात्मक पूर्णांक का घन 9m, 9m + 1 या 9m + 8 के रूप का होता है।


एक धनात्मक पूर्णांक 3q + 1 के रूप का है, जहाँ q एक प्राकृत संख्या है। क्या इसके वर्ग को 3m + 1 से भिन्न रूप में, अर्थात् 3m या 3m + 2 के रूप में लिख सकते हैं, जहाँ m कोई पूर्णांक है? अपने उत्तर का औचित्य दीजिए।


दर्शाइए कि किसी धनात्मक पूर्णांक का वर्ग, किसी पूर्णांक q के लिए, 5q + 2 या 5q + 3 के रूप का नहीं हो सकता।


दर्शाइए कि किसी धनात्मक पूर्णांक का वर्ग, किसी पूर्णांक m के लिए, 6m + 2 या 6m + 5 के रूप का नहीं हो सकता।


यदि n एक विषम पूर्णांक है, तो दर्शाइए कि n2 − 1, 8 से विभाज्य है।


सिद्ध कीजिए कि यदि x और y दोनों धनात्मक विषम पूर्णांक हैं, तो x2 + y2 एक सम संख्या है परंतु 4 से विभाज्य नहीं है।


सिद्ध कीजिए कि किसी धनात्मक पूर्णांक n के लिए संख्या n3 − n, 6 से विभाज्य है।


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×