मराठी

HSC Science (Electronics) इयत्ता १२ वी - Maharashtra State Board Important Questions for Mathematics and Statistics

Advertisements
[object Object]
[object Object]
विषय
मुख्य विषय
अध्याय
Advertisements
Advertisements
Mathematics and Statistics
< prev  81 to 100 of 1321  next > 

Show that the points A(2, –1, 0) B(–3, 0, 4), C(–1, –1, 4) and D(0, – 5, 2) are non coplanar

Appears in 2 question papers
Chapter: [0.015] Vectors
Concept: Vector Triple Product

If A(5, 1, p), B(1, q, p) and C(1, −2, 3) are vertices of triangle and `"G"("r", -4/3, 1/3)` is its centroid then find the values of p, q and r

Appears in 2 question papers
Chapter: [0.015] Vectors
Concept: Section Formula

If the foot of the perpendicular drawn from the origin to the plane is (4, −2, -5), then the equation of the plane is ______ 

Appears in 2 question papers
Chapter: [0.016] Line and Plane
Concept: Equation of a Plane

Find the vector equation of the line passing through the point having position vector `4hat i - hat j + 2hat"k"` and parallel to the vector `-2hat i - hat j + hat k`.

Appears in 2 question papers
Chapter: [0.016] Line and Plane
Concept: Vector and Cartesian Equations of a Line

Reduce the equation `bar"r"*(3hat"i" + 4hat"j" + 12hat"k")` = 8 to normal form

Appears in 2 question papers
Chapter: [0.016] Line and Plane
Concept: Vector and Cartesian Equations of a Line

Find the Cartesian equation of the line passing through A(1, 2, 3) and B(2, 3, 4)

Appears in 2 question papers
Chapter: [0.016] Line and Plane
Concept: Vector and Cartesian Equations of a Line

Find acute angle between the lines `(x - 1)/1 = (y - 2)/(-1) = (z - 3)/2` and `(x - 1)/2 = (y - 1)/1 = (z - 3)/1`

Appears in 2 question papers
Chapter: [0.016] Line and Plane
Concept: Angle Between Planes

Solve the following LPP by using graphical method.

Maximize : Z = 6x + 4y

Subject to x ≤ 2, x + y ≤  3, -2x + y ≤  1, x ≥  0, y ≥ 0.

Also find maximum value of Z.

Appears in 2 question papers
Chapter: [0.017] Linear Programming
Concept: Graphical Method of Solving Linear Programming Problems

The cost of 4 pencils, 3 pens and 2 erasers is Rs. 60. The cost of 2 pencils, 4 pens and 6 erasers is Rs. 90 whereas the cost of 6 pencils, 2 pens and 3 erasers is Rs. 70. Find the cost of each item by using matrices.

Appears in 2 question papers
Chapter: [0.02] Matrices
Concept: Elementary Transformations

If y = eax. cos bx, then prove that

`(d^2y)/(dx^2) - 2ady/dx + (a^2 + b^2)y` = 0

Appears in 2 question papers
Chapter: [0.021] Differentiation
Concept: Derivatives of Composite Functions - Chain Rule

If y = `log[sqrt((1 - cos((3x)/2))/(1 +cos((3x)/2)))]`, find `("d"y)/("d"x)`

Appears in 2 question papers
Chapter: [0.021] Differentiation
Concept: Logarithmic Differentiation

If y = f(u) is a differentiable function of u and u = g(x) is a differentiable function of x such that the composite function y = f[g(x)] is a differentiable function of x, then `("d"y)/("d"x) = ("d"y)/("d"u)*("d"u)/("d"x)`. Hence find `("d"y)/("d"x)` if y = sin2x

Appears in 2 question papers
Chapter: [0.021] Differentiation
Concept: Derivatives of Composite Functions - Chain Rule

Examine the maxima and minima of the function f(x) = 2x3 - 21x2 + 36x - 20 . Also, find the maximum and minimum values of f(x). 

Appears in 2 question papers
Chapter: [0.022000000000000002] Applications of Derivatives
Concept: Maxima and Minima

Show that the height of the cylinder of maximum volume, that can be inscribed in a sphere of radius R is `(2R)/sqrt3.`  Also, find the maximum volume.

Appears in 2 question papers
Chapter: [0.022000000000000002] Applications of Derivatives
Concept: Maxima and Minima

The surface area of a spherical balloon is increasing at the rate of 2cm2/sec. At what rate the volume of the balloon is increasing when radius of the balloon is 6 cm?

Appears in 2 question papers
Chapter: [0.022000000000000002] Applications of Derivatives
Concept: Derivatives as a Rate Measure

A car is moving in such a way that the distance it covers, is given by the equation s = 4t2 + 3t, where s is in meters and t is in seconds. What would be the velocity and the acceleration of the car at time t = 20 seconds?

Appears in 2 question papers
Chapter: [0.022000000000000002] Applications of Derivatives
Concept: Derivatives as a Rate Measure

A ladder 10 meter long is leaning against a vertical wall. If the bottom of the ladder is pulled horizontally away from the wall at the rate of 1.2 meters per seconds, find how fast the top of the ladder is sliding down the wall when the bottom is 6 meters away from the wall

Appears in 2 question papers
Chapter: [0.022000000000000002] Applications of Derivatives
Concept: Derivatives as a Rate Measure

Find the values of x, for which the function f(x) = x3 + 12x2 + 36𝑥 + 6 is monotonically decreasing

Appears in 2 question papers
Chapter: [0.022000000000000002] Applications of Derivatives
Concept: Increasing and Decreasing Functions

A man of height 180 cm is moving away from a lamp post at the rate of 1.2 meters per second. If the height of the lamp post is 4.5 meters, find the rate at which
(i) his shadow is lengthening
(ii) the tip of the shadow is moving

Appears in 2 question papers
Chapter: [0.022000000000000002] Applications of Derivatives
Concept: Derivatives as a Rate Measure

Prove that:

`int sqrt(x^2 - a^2)dx = x/2sqrt(x^2 - a^2) - a^2/2log|x + sqrt(x^2 - a^2)| + c`

Appears in 2 question papers
Chapter: [0.023] Indefinite Integration
Concept: Methods of Integration: Integration by Parts
< prev  81 to 100 of 1321  next > 
Advertisements
Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×