Advertisements
Advertisements
Question
1.0 mol of a monoatomic ideal gas is expanded from state (1) to state (2) as shown in figure. Calculate the work done for the expansion of gas from state (1) to state (2) at 298 K.
Solution
It is clear from the figure that the process has been carried out in infinite steps, hence it is isothermal reversible expansion.
w = – 2.303 nRT log `V_2/V_1`
But, p1V1 = p2V2
⇒ `V_2/V_1 = p_1/p_2 = 2/1` = 2
∴ w = – 2.303 nRT log `p_1/p_2`
= – 2.303 × 1 mol × 8.314 J mol–1 K–1 × 298 K–1 × log 2
= – 2.303 × 8.314 × 298 × 0.3010 J
= –1717.46 J
APPEARS IN
RELATED QUESTIONS
The pressure-volume work for an ideal gas can be calculated by using the expression w = `- int_(v_i)^(v_f) p_(ex) dV`. The work can also be calculated from the pV– plot by using the area under the curve within the specified limits. When an ideal gas is compressed (a) reversibly or (b) irreversibly from volume Vi to Vf. choose the correct option.
A sample of 1.0 mol of a monoatomic ideal gas is taken through a cyclic process of expansion and compression as shown in figure 6.1. What will be the value of ∆H for the cycle as a whole?
How will you calculate work done on an ideal gas in a compression, when change in pressure is carried out in infinite steps?
Represent the potential energy/enthalpy change in the following processes graphically.
(a) Throwing a stone from the ground to roof.
(b) \[\ce{1/2 H2(g) + 1/2 Cl2 (g) ⇌ HCl (g) Δ_rH^Θ = - 92.32 kJ mol^{-1}}\]
In which of the processes potential energy/enthalpy change is contributing factor to the spontaneity?
Match the following :
A | B |
(i) Adiabatic process | (a) Heat |
(ii) Isolated system | (b) At constant volume |
(iii) Isothermal change | (c) First law of thermodynamics |
(iv) Path function | (d) No exchange of energy and matter |
(v) State function | (e) No transfer of heat |
(vi) ΔU = q | (f) Constant temperature |
(vii) Law of conservation of energy | (g) Internal energy |
(viii) Reversible process | (h) Pext = o |
(ix) Free expansion | (i) At constant pressure |
(x) ΔH = q | (j) Infinitely slow process which proceeds through a series of equilibrium states. |
(xi) Intensive property | (k) Entropy |
(xii) Extensive property | (l) Pressure |
(m) Specific heat |
Match the following :
Column I | Column II |
(i) Entropy of vapourisation | (a) decreases |
(ii) K for spontaneous process | (b) is always positive |
(iii) Crystalline solid state | (c) lowest entropy |
(iv) ∆U in adiabatic expansion of ideal gas | (d) `(∆H_(vap))/T_b` |
For silver Cp (J K-1 mol-1) = 23 + 0.01 T. If the temperature (T) of 3 moles of silver is raised from 300 K to 1000 K at 1 atom pressure, the value of ΔH will be close to ______.
Calculate the work involved when 1 mol of an ideal gas is compressed reversibly from 1.00 bar to 5.00 bar at a constant temperature of 300 K ______.
1 mole of an ideal monoatomic gas initially at 1 atm and 300 K experiences a process by which pressure is doubled. The nature of the process is unspecified but 6. ΔU = 900 cal. The final volume will be ______ l.
[Given : R = 0.08 atm lit. I mol/K = 2 Cal/K/mol J]
Five moles of an ideal gas at 1 bar and 298 K is expanded into the vacuum to double the volume. The work done is ______.