English

18 m ऊँचे एक ध्वज स्तंभ की छाया की लंबाई 9.6 m है। इस स्तंभ के ऊपरी सिरे की छाया के दूरस्थ सिरे से दूरी ज्ञात कीजिए। - Mathematics (गणित)

Advertisements
Advertisements

Question

18 m ऊँचे एक ध्वज स्तंभ की छाया की लंबाई 9.6 m है। इस स्तंभ के ऊपरी सिरे की छाया के दूरस्थ सिरे से दूरी ज्ञात कीजिए।

Sum

Solution

माना कि ध्वज का खंभा BC = 18 m है और इसकी छाया AB = 9.6 m है।

खम्भे के शीर्ष, C की दूर के सिरे से दूरी, अर्थात् छाया की A, AC है।


समकोण ∆ABC में,

AC2 = AB2 + BC2  ...[पाइथागोरस प्रमेय द्वारा]

⇒ AC2 = (9.6)2 + (18)2

⇒ AC2 = 92.16 + 324

⇒ AC2 = 416.16

∴ AC = `sqrt(416.16)` = 20.4 m

अत: अभीष्ट दूरी 20.4 m है।

shaalaa.com
पाइथागोरस प्रमेय
  Is there an error in this question or solution?
Chapter 6: त्रिभुज - प्रश्नावली 6.4 [Page 76]

APPEARS IN

NCERT Exemplar Mathematics [Hindi] Class 10
Chapter 6 त्रिभुज
प्रश्नावली 6.4 | Q 7. | Page 76

RELATED QUESTIONS

कुछ त्रिभुजों की भुजाएँ नीचे दी गई हैं। निर्धारित कीजिए कि इनमें से कौन-कौन से त्रिभुज समकोण त्रिभुज हैं। इस स्थिति में कर्ण की लंबाई भी लिखिए।

3 cm, 8 cm, 6 cm


कुछ त्रिभुजों की भुजाएँ नीचे दी गई हैं। निर्धारित कीजिए कि इनमें से कौन-कौन से त्रिभुज समकोण त्रिभुज हैं। इस स्थिति में कर्ण की लंबाई भी लिखिए।

13 cm, 12 cm, 5 cm


आकृति में ABD एक समकोण त्रिभुज है जिसका कोण A समकोण है तथा AC ⊥ BD है। दर्शाइए कि

 

AC2 = BC.DC


ABC एक समद्विबाहु त्रिभुज है जिसमें AC = BC है। यदि AB2 = 2AC2 है, तो सिद्ध कीजिए कि ABC एक समकोण त्रिभुज है।


आकृति में ∆ABC के अभ्यंतर में स्थित कोई बिंदु O है तथा OD ⊥ BC, OE ⊥ AC और OF ⊥ AB है। दर्शाइए कि

  1. OA2 + OB2 + OC2 – OD2 – OE2 – OF2 = AF2 + BD2 + CE2
  2. AF2 + OB2 + CE2 = AE2 + CD2 + BF2

 


एक हवाई जहाज एक हवाई अड्डे से उत्तर की ओर 1000 km/hr की चाल से उड़ता है। इसी समय एक अन्य हवाई जहाज उसी हवाई अड्डे से पश्चिम की ओर 1200 km/hr की चाल से उड़ता है। `1 1/2` घंटे के बाद दोनों हवाई जहाजों के बीच की दूरी कितनी होगी?


किसी समबाहु त्रिभुज में, सिद्ध कीजिए कि उसकी एक भुजा के वर्ग का तिगुना उसके एक शीर्षलंब के वर्ग के चार गुने के बराबर होता है।


आकृति में ABC एक त्रिभुज है जिसमें ∠ABC > 90° हैं तथा AD ⊥ CB है। सिद्ध कीजिए कि AC2 = AB2 + BC2 + 2 BC.BD है।

 


10 m लंबी एक सीढ़ी, जो एक उर्ध्वाधर दीवार के सहारे टिकी हुई है, के निचले सिरे की दीवार के आधार से दूरी 6 m है। दीवार पर उस बिंदु की ऊँचाई ज्ञात कीजिए, जहाँ तक सीढ़ी का ऊपरी सिरा पहुँचता है।


∆PQR में, PD ⊥ QR इस प्रकार है कि D भुजा QR पर स्थित है। यदि PQ = a, PR = b, QD = c और DR = d है, तो सिद्ध कीजिए कि (a + b)(a – b) = (c + d)(c – d) है।


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×