Advertisements
Advertisements
Question
200 और 400 के मध्य आने वाली उन सभी संख्याओं का योगफल ज्ञात कीजिए जो 7 से विभाजित हों।
Solution
200 से 400 के मध्य आने वाली संख्याएँ 203, 210, 217, …….., 399
मान लीजिए 399, nवाँ पद है।
∴ 399 = a + (n – 1)7
= 203 + 7(n – 1)
या 399 – 203 = 196 = 7(n – 1)
∴ n – 1 = `196/7` = 28 या n = 29
∴ 203 + 210 + 217 + …… + 399
∴ `29/2 [203 + 399]` .......[∵ S = `"n"/2` (a +l)]
= `29/2 (602)`
= 29 × 301
= 8729
APPEARS IN
RELATED QUESTIONS
1 से 2001 तक के विषम पूर्णांकों का योग ज्ञात कीजिए।
100 तथा 1000 के मध्य उन सभी प्राकृत संख्याओं का योगफल ज्ञात कीजिए जो 5 के गुणज हों।
किसी समांतर श्रेणी में प्रथम पद 2 है तथा प्रथम पाँच पदों का योगफल, अगले पाँच पदों के योगफल का एक चौथाई है। दर्शाइए कि 20वाँ पद −112 है।
समांतर श्रेणी −6, `-11/2`, −5, ..... के कितने पदों का योगफल –25 है?
किसी समांतर श्रेणी का pवाँ पद `1/"q"` तथा qवाँ पद `1/"p"`, हो तो सिद्ध कीजिए कि प्रथम pq पदों का योग `1/2 ("pq" + 1)` होगा जहाँ p ≠ q
यदि किसी समांतर श्रेणी 25, 22, 19, …... के कुछ पदों का योगफल 116 है तो अंतिम पद ज्ञात कीजिए।
दो समांतर श्रेणियों के n पदों के योगफल का अनुपात 5n + 4 : 9n + 6 हो, तो उनके 18 वें पदों का अनुपात ज्ञात कीजिए।
एक व्यक्ति ॠण का भुगतान 100 रुपये की प्रथम किश्त से शुरू करता है। यदि वह प्रत्येक किश्त में 5 रुपये प्रति माह बढ़ता है तो 30 वीं किश्त की राशि क्या होगी?
यदि किसी समांतर श्रेणी के nवें पदों का योगफल 3n2 + 5n हैं तथा इसका mवाँ पद 164 है, तो m का मान ज्ञात कीजिए।
किसी समांतर श्रेणी के m तथा n पदों के योगफलों का अनुपात m2 : n2 है तो दर्शाइए कि m वें तथा n वें पदों का अनुपात (2m – 1) : (2n – 1) है।
यदि किसी समांतर श्रेणी के प्रथम p पदों का योग, प्रथम q पदों के योगफल के बराबर हो तो प्रथम (p + q) पदों का योगफल ज्ञात कीजिए।
m संख्याओं को 1 तथा 31 के रखने पर प्राप्त अनुक्रम एक समांतर श्रेणी है और 7वीं एवं (m – 1) वीं संख्याओं का अनुपात 5 : 9 है। तो m का मान ज्ञात कीजिए।
एक बहुभुज के दो क्रमिक अंत: कोणों का अंतर 5° है। यदि सबसे छोटा कोण 120° हो, तो बहुभुज की भुजाओं की संख्या ज्ञात कीजिए।
यदि किसी समांतर श्रेणी की तीन संख्याओं का योग 24 है तथा उनका गुणनफल 440 है, तो संख्याएँ ज्ञात कीजिए।
माना कि किसी समांतर श्रेणी के n, 2n तथा 3n पदों का योगफल क्रमशः S1, S2 तथा S3 है तो दिखाइए कि S3 = 3(S2 – S1)
यदि `"a"(1/"b" + 1/"c"), "b"(1/"c" + 1/"a"), "c"(1/"a" + 1/"b")` समांतर श्रेणी में हैं, तो सिद्ध कीजिए कि a, b, c समांतर श्रेणी में हैं।
एक व्यक्ति अपने चार मित्रों को पत्र लिखता है। वह प्रत्येक को उसकी नकल करके चार दूसरे व्यक्तियों को भेजने का निर्देश देता है, तथा उनसे यह भी करने को कहता है कि प्रत्येक पत्र प्राप्त करने वाला व्यक्ति इस श्रृंखला को जारी रखे। यह कल्पना करके कि श्रंखला न टूटे तो 8वें पत्रों के समूह भेजे जाने तक कितना डाक खर्च होगा जबकि एक पत्र का डाक खर्च 50 पैसे है।
एक आदमी ने एक बैंक में 10000 रूपये 5% वार्षिक साधारण ब्याज पर जमा किया। जब से रकम बैंक में जमा की गई तब से, 15वें वर्ष में उसके खाते में कितनी रकम हो गई तथा 20 वर्षों बाद कुल कितनी रकम हो गई, ज्ञात कीजिए।
एक निर्माता घोषित करता है कि उसकी मशीन जिसका मूल्य 15625 रूपये है, हर वर्ष 20% की दर से उसका अवमूल्यन होता है। 5 वर्ष बाद मशीन का अनुमानित मूल्य ज्ञात कीजिए।
किसी कार्य को कुछ दिनों में पूरा करने के लिए 150 कर्मचारी लगाए गए। दूसरे दिन 4 कर्मचारियों ने काम छोड़ दिया, तीसरे दिन 4 और कर्मचारियों ने काम छोड़ दिया तथा इस प्रकार अन्य। अब कार्य पूर्ण करने में 8 दिन अधिक लगते हैं, तो दिनों की संख्या ज्ञात कीजिए, जिनमें कार्य पूरा किया गया।