English
Karnataka Board PUCPUC Science Class 11

A Barometer Kept in an Elevator Accelerating Upward Reads 76 Cm. the Air Pressure in the Elevator is - Physics

Advertisements
Advertisements

Question

A barometer kept in an elevator accelerating upward reads 76 cm. The air pressure in the elevator is

Options

  • 76 cm

  • < 76 cm

  • > 76 cm

  • zero

MCQ

Solution

> 76 cm

When the elevator is going upwards with acceleration a, the effective acceleration is a' =(g + a).
Thus, pressure is given by
P = hρ(g + a)
Air pressure in the elevator = P = h'ρg
Because the pressure is the same, h' > h.
∴ Air pressure > 76 cm

shaalaa.com
  Is there an error in this question or solution?
Chapter 13: Fluid Mechanics - MCQ [Page 272]

APPEARS IN

HC Verma Concepts of Physics Vol. 1 [English] Class 11 and 12
Chapter 13 Fluid Mechanics
MCQ | Q 10 | Page 272

RELATED QUESTIONS

A U-tube contains water and methylated spirit separated by mercury. The mercury columns in the two arms are in level with 10.0 cm of water in one arm and 12.5 cm of spirit in the other. What is the specific gravity of spirit?


Does it matter if one uses gauge instead of absolute pressures in applying Bernoulli’s equation? Explain.


A manometer reads the pressure of a gas in an enclosure as shown in Figure (a) When a pump removes some of the gas, the manometer reads as in Figure (b) The liquid used in the manometers is mercury and the atmospheric pressure is 76 cm of mercury.

(a) Give the absolute and gauge pressure of the gas in the enclosure for cases (a) and (b), in units of cm of mercury.

(b) How would the levels change in case (b) if 13.6 cm of water (immiscible with mercury) are poured into the right limb of the manometer? (Ignore the small change in the volume of the gas).

 


During blood transfusion the needle is inserted in a vein where the gauge pressure is 2000 Pa. At what height must the blood container be placed so that blood may just enter the vein? [Use the density of whole blood from Table 10.1].


The three vessels shown in the following figure have same base area. Equal volumes of a liquid are poured in the three vessels. The force on the base will be


Equal mass of three liquids are kept in three identical cylindrical vessels A, B and C. The densities are ρA, ρB, ρC with ρA < ρB < ρC. The force on the base will be


Figure shows a capillary tube of radius r dipped into water. If the atmospheric pressure is P0, the pressure at point A is


A glass full of water has a bottom of area 20 cm2, top of area 20 cm2, height 20 cm and volume half a litre. 
(a) Find the force exerted by the water on the bottom.
(b) Considering the equilibrium of the water, find the resultant force exerted by the sides of the glass on the water. Atmospheric pressure = 1.0 × 105 N/m2. Density of water 1000 kg/m3 and g = 10 m/s2. Take all numbers
to be exact.


Suppose the glass of the previous problem is covered by a jar and the air inside the jar is completely pumped out. (a) What will be the answers to the problem? (b)  Show that the answers do not change if a glass of different shape is used provided the height, the bottom area and the volume are unchanged.


If water be used to construct a barometer, what would be the height of water column at standard atmospheric pressure (76 cm of mercury) ?


A U-tube containing a liquid is accelerated horizontally with a constant acceleration a0. If the separation between the vertical limbs is l, find the difference in the heights of the liquid in the two arms. 


Water leaks out from an open tank through a hole of area 2 mm2 in the bottom. Suppose water is filled up to a height of 80 cm and the area of cross section of the tanks is 0.4 m2. The pressure at the open surface and at the hole are equal to the atmospheric pressure. Neglect the small velocity of the water near the open surface in the tank. (a) Find the initial speed of water coming out of the hole. (b) Find the speed of water coming out when half of water has leaked out. (c) Find the volume of eater leaked out using a time interval dt after the height remained is h. Thus find the decrease in height dh in terms of h and dt.
(d) From the result of park (c) find the time required for half of the water to leak out.


Considering the pressure p to be proportional to the density, find the pressure p at a height h if the pressure on the surface of the earth is p0.


A glass capillary sealed at the upper end is of length 0.11 m and internal diameter 2 × 10-5 m. This tube is immersed vertically into a liquid of surface tension 5.06 × 10-2 N/m. When the length x × 10-2 m of the tube is immersed in liquid then the liquid level inside and outside the capillary tube becomes the same, then the value of x is ______ m. (Assume atmospheric pressure is 1.01 × 105 `"N"/"m"^2`) 


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×