English

A bat emits an ultrasonic sound of frequency 1000 kHz in the air. If the sound meets a water surface, The speed of sound in air is 340 m s–1 and in water 1486 m s–1. - Physics

Advertisements
Advertisements

Question

A bat emits an ultrasonic sound of frequency 1000 kHz in the air. If the sound meets a water surface, what is the wavelength of the the reflected sound? The speed of sound in air is 340 m s–1 and in water 1486 m s–1.

Numerical

Solution 1

Frequency of the ultrasonic sound, ν = 1000 kHz = 106 Hz

Speed of sound in air, va = 340 m/s

The wavelength (λr) of the reflected sound is given by the relation:

`lambda_r = v/v`

`= 340/10^6 = 3.4 xx 10^(-4)`

shaalaa.com

Solution 2

Here v  = `1000 xx10^3` Hz  = 10^6 Hz, `"v"_"a" = 340  "ms"^(-1)`

`"v"_"w" = 1486 "ms"^(-1)`

Wavelength of reflected sound, `lambda_"a"`

`= "v"_"a"/"v" = 340/ 10^6 "m"`

`= 3.4 xx 10^(-4) "m"`

shaalaa.com
The Speed of a Travelling Wave
  Is there an error in this question or solution?
Chapter 15: Waves - Exercises [Page 387]

APPEARS IN

NCERT Physics [English] Class 11
Chapter 15 Waves
Exercises | Q 6.1 | Page 387

RELATED QUESTIONS

A stone dropped from the top of a tower of height 300 m high splashes into the water of a pond near the base of the tower. When is the splash heard at the top given that the speed of sound in air is 340 m s–1? (g= 9.8 m s–2)


Use the formula `v = sqrt((gamma P)/rho)` to explain why the speed of sound in air increases with humidity.


A train, standing at the outer signal of a railway station blows a whistle of frequency 400 Hz in still air. (i) What is the frequency of the whistle for a platform observer when the train (a) approaches the platform with a speed of 10 m s–1, (b) recedes from the platform with a speed of 10 m s–1? (ii) What is the speed of sound in each case? The speed of sound in still air can be taken as 340 m s–1.


Two strings A and B, made of same material, are stretched by same tension. The radius of string A is double of the radius of B. A transverse wave travels on A with speed `v_A` and on B with speed `v_B`. The ratio `v_A/v_B` is ______.


A wave travels along the positive x-direction with a speed of 20 m s−1. The amplitude of the wave is 0⋅20 cm and the wavelength 2⋅0 cm. (a) Write the suitable wave equation which describes this wave. (b) What is the displacement and velocity of the particle at x= 2⋅0 cm at time = 0 according to the wave equation written? Can you get different values of this quantity if the wave equation is written in a different fashion?


A string 1 m long is fixed at one end. The other end is moved up and down with a frequency of 20 Hz. Due to this, a stationary wave with four complete loops gets produced on the string. Find the speed of the progressive wave which produces the stationary wave. 


A steel wire has a length of 12 m and a mass of 2.10 kg. What will be the speed of a transverse wave on this wire when a tension of 2.06 × 104N is applied?


Given below are some functions of x and t to represent the displacement of an elastic wave.

  1. y = 5 cos (4x) sin (20t)
  2. y = 4 sin (5x – t/2) + 3 cos (5x – t/2)
  3. y = 10 cos [(252 – 250) πt] cos [(252 + 250)πt]
  4. y = 100 cos (100πt + 0.5x)

State which of these represent

  1. a travelling wave along –x direction
  2. a stationary wave
  3. beats
  4. a travelling wave along +x direction.

Given reasons for your answers.


Two perfectly identical wires kept under tension are in unison. When the tension in the wire is increased by 1% then on sounding them together 3 beats are heard in 2 seconds. What is the frequency of each wire?


The displacement y of a particle in a medium can be expressed as, y = `10^-6sin(100t + 20x + pi/4)` m where t is in second and x in meter. The speed of the wave is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×