Advertisements
Advertisements
Question
A committee of 7 peoples has to be formed from 8 men and 4 women. In how many ways can this be done when the committee consists of exactly 3 women?
Solution
Number of men = 8
Number of women = 4
Number of peoples in the committee = 7
Exactly 3 women
In a 7 member committee, women must be 3. Therefore, the remaining 4 must be men.
The number of ways of selecting 3 women from 4 women = 4C3
The number of ways of selecting 4 men from 8 men = 8C4
∴ The total number of ways of selection is = 4C3 × 8C4
= `(4!)/(3!(4 - 3)!) xx (8!)/(4!(8 - 4)!)`
= `(4!)/(3! xx 1!)xx (8)/(4! xx 4!)`
= `(4 xx 3!)/(3!) xx (8 xx 7 xx 6 xx 5 xx 4!)/(4! xx 4!)`
= `4 xx (8 xx 7 xx 6 xx 5)/(4!)`
= `(4 xx 8 xx 7 xx 6 xx 5)/(4 xx 3 xx 2 xx 1)`
= 8 × 7 × 5
= 280
APPEARS IN
RELATED QUESTIONS
There are 18 guests at a dinner party. They have to sit 9 guests on either side of a long table, three particular persons decide to sit on one side and two others on the other side. In how many ways can the guests to be seated?
In how many ways can a cricket team of 11 players be chosen out of a batch of 15 players?
- There is no restriction on the selection.
- A particular player is always chosen.
- A particular player is never chosen.
How many code symbols can be formed using 5 out of 6 letters A, B, C, D, E, F so that the letters
- cannot be repeated
- can be repeated
- cannot be repeated but must begin with E
- cannot be repeated but end with CAB.
The number of ways selecting 4 players out of 5 is
If nPr = 720(nCr), then r is equal to:
Prove that `""^35"C"_5 + sum_("r" = 0)^4 ""^((39 - "r"))"C"_4` = 40C5
There are 15 persons in a party and if each 2 of them shakes hands with each other, how many handshakes happen in the party?
How many chords can be drawn through 20 points on a circle?
In a parking lot one hundred, one-year-old cars, are parked. Out of them five are to be chosen at random for to check its pollution devices. How many different set of five cars can be chosen?
Find the total number of subsets of a set with
[Hint: nC0 + nC1 + nC2 + ... + nCn = 2n] 4 elements
Find the total number of subsets of a set with
[Hint: nC0 + nC1 + nC2 + ... + nCn = 2n] 5 elements
There are 5 teachers and 20 students. Out of them a committee of 2 teachers and 3 students is to be formed. Find the number of ways in which this can be done. Further find in how many of these committees a particular teacher is included?
There are 5 teachers and 20 students. Out of them a committee of 2 teachers and 3 students is to be formed. Find the number of ways in which this can be done. Further find in how many of these committees a particular student is excluded?
In an examination a student has to answer 5 questions, out of 9 questions in which 2 are compulsory. In how many ways a student can answer the questions?
Choose the correct alternative:
The number of parallelograms that can be formed from a set of four parallel lines intersecting another set of three parallel lines
Choose the correct alternative:
Number of sides of a polygon having 44 diagonals is ______
Choose the correct alternative:
`""^(("n" - 1))"C"_"r" + ""^(("n" - 1))"C"_(("r" - 1))` is
Choose the correct alternative:
The number of rectangles that a chessboard has ______
Choose the correct alternative:
If nC4, nC5, nC6 are in AP the value of n can be