English

A Company Sells Two Different Products, a and B. the Two Products Are Produced in a Common Production Process, Which Has a Total Capacity of 500 Man-hours. - Mathematics

Advertisements
Advertisements

Question

A company sells two different products, A and B. The two products are produced in a common production process, which has a total capacity of 500 man-hours. It takes 5 hours to produce a unit of A and 3 hours to produce a unit of B. The market has been surveyed and company officials feel that the maximum number of unit of A that can be sold is 70 and that for B is 125. If the profit is Rs 20 per unit for the product A and Rs 15 per unit for the product B, how many units of each product should be sold to maximize profit?

Sum

Solution

Let units of product A and units of product B were manufactured.
Clearly, \[x \geq 0, y \geq 0\]

It takes 5 hours to produce a unit of A and 3 hours to produce a unit of B.The two products are produced in a common production process, which has a total capacity of 500 man-hours.

\[5x + 3y \leq 500\]

The maximum number of unit of A that can be sold is 70 and that for B is 125.

\[x \leq 70\]
\[y \leq 125\]

If the profit is Rs 20 per unit for the product A and Rs 15 per unit for the product B. Therefore, profit units of product A and units of product B  is Rs 20x and Rs 15y respectively.

Total profit  = Z = \[20x + 15y\]

The mathematical formulation of the given problem is 

Max Z = \[20x + 15y\] 

subject to

\[5x + 3y \leq 500\]

\[x \leq 70\]

\[y \leq 125\]

\[x \geq 0, y \geq 0\]

First we will convert inequations into equations as follows:
5x + 3y = 500, x = 70, y = 125, x = 0 and y = 0

Region represented by 5x + 3y ≤ 500:
The line 5x + 3y = 500 meets the coordinate axes at A1(100, 0) and \[B_1 \left( 0, \frac{500}{3} \right)\] respectively. By joining these points we obtain the line 5x + 3y = 500. Clearly (0,0) satisfies the 5x + 3y = 500. So, the region which contains the origin represents the solution set of the inequation 5x + 3y ≤ 500.
Region represented by x ​ ≤ 70:
The line ​x = 70 is the line passes through C1(70, 0) and is parallel to Y axis. The region to the left of the line x = 70 will satisfy the inequation x ​ ≤ 70.
Region represented by y ​ ≤ 125:
The line ​y = 125 is the line passes through D1(0, 125) and is parallel to X axis. The region below the  the line y = 125 will satisfy the inequation y ​ ≤ 125.
Region represented by ≥ 0 and y ≥ 0:
Since, every point in the first quadrant satisfies these inequations. So, the first quadrant is the region represented by the inequations x ≥ 0, and y ≥ 0.
The feasible region determined by the system of constraints 5x + 3y ≤ 500, x ​ ≤ 70, y ​ ≤ 125, x ≥ 0 and y ≥ 0 are as follows.

The corner points are  O(0, 0), D1 \[\left( 0, 125 \right)\] , E1(25, 125), F1(70, 50) and C1(70, 0).The values of Z at the corner points are 

Corner points Z = \[20x + 15y\]
O 0
D1 1875
E1 2375
F1 2150
C1 1400
 
The maximum value of Z is 2375 which is at E1
\[\left( 25, 125 \right)\] .
Thus, maximum profit is Rs 2375, 25 units of A and 125 units of B should be manufactured.

 

 
shaalaa.com
  Is there an error in this question or solution?
Chapter 30: Linear programming - Exercise 30.4 [Page 54]

APPEARS IN

RD Sharma Mathematics [English] Class 12
Chapter 30 Linear programming
Exercise 30.4 | Q 33 | Page 54

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

Minimize `z=4x+5y ` subject to `2x+y>=7, 2x+3y<=15, x<=3,x>=0, y>=0` solve using graphical method.


Minimize : Z = 6x + 4y

Subject to the conditions:

3x + 2y ≥ 12,

x + y ≥ 5,

0 ≤ x ≤ 4,

0 ≤ y ≤ 4


Minimum and maximum z = 5x + 2y subject to the following constraints:

x-2y ≤ 2

3x+2y ≤ 12

-3x+2y ≤ 3

x ≥ 0,y ≥ 0


A company manufactures bicycles and tricycles each of which must be processed through machines A and B. Machine A has maximum of 120 hours available and machine B has maximum of 180 hours available. Manufacturing a bicycle requires 6 hours on machine A and 3 hours on machine B. Manufacturing a tricycle requires 4 hours on machine A and 10 hours on machine B.
If profits are Rs. 180 for a bicycle and Rs. 220 for a tricycle, formulate and solve the L.P.P. to determine the number of bicycles and tricycles that should be manufactured in order to maximize the profit.


Solve the following linear programming problem graphically :

Maximise Z = 7x + 10y subject to the constraints

4x + 6y ≤ 240

6x + 3y ≤ 240

x ≥ 10

x ≥ 0, y ≥ 0


Solve the following LPP by graphical method:

Minimize Z = 7x + y subject to 5x + y ≥ 5, x + y ≥ 3, x ≥ 0, y ≥ 0


Maximize Z = 5x + 3y
Subject to

\[3x + 5y \leq 15\]
\[5x + 2y \leq 10\]
\[ x, y \geq 0\]


Minimize Z = 18x + 10y
Subject to 

\[4x + y \geq 20\]
\[2x + 3y \geq 30\]
\[ x, y \geq 0\]


Maximize Z = 3x + 4y
Subject to

\[2x + 2y \leq 80\]
\[2x + 4y \leq 120\]


Minimize Z = 2x + 4y
Subject to 

\[x + y \geq 8\]
\[x + 4y \geq 12\]
\[x \geq 3, y \geq 2\]

 


Minimize Z = x − 5y + 20
Subject to

\[x - y \geq 0\]
\[ - x + 2y \geq 2\]
\[ x \geq 3\]
\[ y \leq 4\]
\[ x, y \geq 0\]


Minimize Z = 3x1 + 5x2
Subject to

\[x_1 + 3 x_2 \geq 3\]
\[ x_1 + x_2 \geq 2\]
\[ x_1 , x_2 \geq 0\]

 


Maximize Z = −x1 + 2x2
Subject to

\[- x_1 + 3 x_2 \leq 10\]
\[ x_1 + x_2 \leq 6\]
\[ x_1 - x_2 \leq 2\]
\[ x_1 , x_2 \geq 0\]

 


Maximize Z = x + y
Subject to

\[- 2x + y \leq 1\]
\[ x \leq 2\]
\[ x + y \leq 3\]
\[ x, y \geq 0\]


 Solve the following linear programming problem graphically:
Minimize  z = 6 x + 3 y
Subject to the constraints:

4 x + \[y \geq\] 80
x + 5 \[y \geq\] 115 

3 x + 2 \[y \leq\] 150
\[x \geq\] 0  , \[y \geq\] 0


A diet for a sick person must contain at least 4000 units of vitamins, 50 units of minerals and 1400 of calories. Two foods A and B, are available at a cost of Rs 4 and Rs 3 per unit respectively. If one unit of A contains 200 units of vitamin, 1 unit of mineral and 40 calories and one unit of food B contains 100 units of vitamin, 2 units of minerals and 40 calories, find what combination of foods should be used to have the least cost?


A fruit grower can use two types of fertilizer in his garden, brand P and Q. The amounts (in kg) of nirogen, phosphoric acid, potash, and chlorine in a bag of each brand are given in the table. Tests indicates that the garden needs at least 240 kg of phosphoric acid, at least 270 kg of potash and at most 310 kg of chlorine.
 

kg per bag
  Brand P Brand P
Nitrogen 3 3.5
Phosphoric acid 1 2
Potash 3 1.5
Chlorine 1.5 2


If the grower wants to minimize the amount of nitrogen added to the garden, how many bags of each brand should be used? What is the minimum amount of nitrogen added in the garden?


If a young man drives his vehicle at 25 km/hr, he has to spend Rs 2 per km on petrol. If he drives it at a faster speed of 40 km/hr, the petrol cost increases to Rs 5/per km. He has Rs 100 to spend on petrol and travel within one hour. Express this as an LPP and solve the same.


Two tailors, A and B earn Rs 15 and Rs 20 per day respectively. A can stitch 6 shirts and 4 pants  while B can stitch 10 shirts and 4 pants per day. How many days shall each work if it is desired to produce (at least) 60 shirts and 32 pants at a minimum labour cost?


A publisher sells a hard cover edition of a text book for Rs 72.00 and paperback edition of the same ext for Rs 40.00. Costs to the publisher are Rs 56.00 and Rs 28.00 per book respectively in addition to weekly costs of Rs 9600.00. Both types require 5 minutes of printing time, although hardcover requires 10 minutes binding time and the paperback requires only 2 minutes. Both the printing and binding operations have 4,800 minutes available each week. How many of each type of book should be produced in order to maximize profit?


A firm manufactures headache pills in two sizes A and B. Size A contains 2 grains of aspirin, 5 grains of bicarbonate and 1 grain of codeine; size B contains 1 grain of aspirin, 8 grains of bicarbonate and 66 grains of codeine. It has been found by users that it requires at least 12 grains of aspirin, 7.4 grains of bicarbonate and 24 grains of codeine for providing immediate effects. Determine graphically the least number of pills a patient should have to get immediate relief. Determine also the quantity of codeine consumed by patient.


A manufacturer produces two types of steel trunks. He has two machines A and B. For completing, the first types of the trunk requires 3 hours on machine A and 3 hours on machine B, whereas the second type of the trunk requires 3 hours on machine A and 2 hours on machine B. Machines A and B can work at most for 18 hours and 15 hours per day respectively. He earns a profit of Rs 30 and Rs 25 per trunk of the first type and the second type respectively. How many trunks of each type must he make each day to make maximum profit?


A man owns a field of area 1000 sq.m. He wants to plant fruit trees in it. He has a sum of Rs 1400 to purchase young trees. He has the choice of two types of trees. Type A requires 10 sq.m of ground per tree and costs Rs 20 per tree and type B requires 20 sq.m of ground per tree and costs Rs 25 per tree. When fully grown, type A produces an average of 20 kg of fruit which can be sold at a profit of Rs 2.00 per kg and type B produces an average of 40 kg of fruit which can be sold at a profit of Rs. 1.50 per kg. How many of each type should be planted to achieve maximum profit when the trees are fully grown? What is the maximum profit?


A cottage industry manufactures pedestal lamps and wooden shades, each requiring the use of grinding/cutting machine and sprayer. It takes 2 hours on the grinding/cutting machine and 3 hours on the sprayer to manufacture a pedestal lamp while it takes 1 hour on the grinding/cutting machine and 2 hours on the sprayer to manufacture a shade. On any day, the sprayer is available for at most 20 hours and the grinding/cutting machine for at most 12 hours. The profit from the sale of a lamp is ₹5.00 and a shade is ₹3.00. Assuming that the manufacturer sell all the lamps and shades that he produces, how should he schedule his daily production in order to maximise his profit?    


There are two types of fertilizers Fand F2. Fconsists of 10% nitrogen and 6% phosphoric acid and ​Fconsists of 5% nitrogen and 10% phosphoric acid. After testing the soil conditions, a farmer finds the she needs atleast 14 kg of nitrogen and 14 kg of phosphoric acid for her crop. If Fcosts ₹6/kg and Fcosts ₹5/kg, determine how much of each type of fertilizer should be used so that the nutrient requirements are met at minimum cost. What is the minimum cost? 


The region represented by the inequation system xy ≥ 0, y ≤ 6, x + y ≤ 3 is 


Sketch the graph of inequation x ≥ 5y in xoy co-ordinate system


Find the graphical solution for the system of linear inequation 2x + y ≤ 2, x − y ≤ 1


Draw the graph of inequalities x ≤ 6, y −2 ≤ 0, x ≥ 0, y ≥ 0 and indicate the feasible region


The minimum value of z = 2x + 9y subject to constraints x + y ≥ 1, 2x + 3y ≤ 6, x ≥ 0, y ≥ 0 is ______.


In linear programming feasible region (or solution region) for the problem is ____________.


In the Corner point method for solving a linear programming problem the second step after finding the feasible region of the linear programming problem and determining its corner points is ____________.


A manufacturer wishes to produce two commodities A and B. The number of units of material, labour and equipment needed to produce one unit of each commodity is shown in the table given below. Also shown is the available number of units of each item, material, labour, and equipment.

Items Commodity A Commodity B Available no. of Units
Material 1 2 8
Labour 3 2 12
Equipment 1 1 10

Find the maximum profit if each unit of commodity A earns a profit of ₹ 2 and each unit of B earns a profit of ₹ 3.


The solution set of the inequality 3x + 5y < 4 is ______.


The objective function Z = ax + by of an LPP has maximum vaiue 42 at (4, 6) and minimum value 19 at (3, 2). Which of the following is true?


Solve the following linear programming problem graphically:

Minimize: Z = 5x + 10y

Subject to constraints:

x + 2y ≤ 120, x + y ≥ 60, x – 2y ≥ 0, x ≥ 0, y ≥ 0.


Solve the following linear programming problem graphically:

Maximize: Z = x + 2y

Subject to constraints:

x + 2y ≥ 100,

2x – y ≤ 0

2x + y ≤ 200,

x ≥ 0, y ≥ 0.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×