Advertisements
Advertisements
Question
A cuboidal block of solid iron has dimensions 50 cm, 45 cm and 34 cm. How many cuboids of size 5 cm by 3 cm by 2 cm can be obtained from this block? Assume cutting causes no wastage.
Solution
\[\text { Dimension of the cuboidal iron block = 50 cm }\times 45 cm \times 34 cm\]
\[\text { Volume of the iron block = length } \times\text { breadth \times\text { height }= (50 \times 45 \times 34) {cm}^3 = 76500 {cm}^3 \]
\[\text { It is given that the dimension of one small cuboids is 5cm } \times 3 cm \times 2 cm . \]
\[\text { Volume of one small cuboid = length } \times \text { breadth }\times \text { height } = (5 \times 3 \times 2) {cm}^3 = 30 {cm}^3 \]
\[ \therefore \text { The required number of small cuboids that can be obtained from the iron block } = \frac{\text { volume of the iron block}}{\text { volume of one small cuboid }} = \frac{76500 {cm}^3}{30 {cm}^3} = 2550\]
APPEARS IN
RELATED QUESTIONS
The paint in a certain container is sufficient to paint an area equal to 9.375 m2. How many bricks of dimensions 22.5 cm × 10 cm × 7.5 cm can be painted out of this container?
How many planks each of which is 3 m long, 15 cm broad and 5 cm thick can be prepared from a wooden block 6 m long, 75 cm broad and 45 cm thick?
The areas of three adjacent faces of a cuboid are x, y and z. If the volume is V, prove that V2 = xyz.
If the areas of the adjacent faces of a rectangular block are in the ratio 2 : 3 : 4 and its volume is 9000 cm3, then the length of the shortest edge is
Find the volume and total surface area of a cube whose each edge is:
(i) 8 cm
(ii) 2 m 40 cm.
The dining-hall of a hotel is 75 m long; 60 m broad and 16 m high. It has five – doors 4 m by 3 m each and four windows 3 m by 1.6 m each. Find the cost of :
(i) papering its walls at the rate of Rs.12 per m2;
(ii) carpetting its floor at the rate of Rs.25 per m2.
A tank 30 m long, 24 m wide, and 4.5 m deep is to be made. It is open from the top. Find the cost of iron-sheet required, at the rate of ₹ 65 per m2, to make the tank.
The ratio between the curved surface area and the total surface area of a cylinder is 1: 2. Find the ratio between the height and the radius of the cylinder.
An open box of length 1.5 m, breadth 1 m, and height 1 m is to be made for use on a trolley for carrying garden waste. How much sheet metal will be required to make this box? The inside and outside surface of the box is to be painted with rust-proof paint. At a rate of 150 rupees per sqm, how much will it cost to paint the box?
Two cuboids with equal volumes will always have equal surface areas.