English
Karnataka Board PUCPUC Science Class 11

A Diode, a Resistor and a 50 Hz Ac Source Are Connected in Series. the Number of Current Pulses per Second Through the Resistor is - Physics

Advertisements
Advertisements

Question

A diode, a resistor and a 50 Hz AC source are connected in series. The number of current pulses per second through the resistor is __________ .

Options

  • 25

  • 50

  • 100

  • 200

MCQ
Fill in the Blanks

Solution

50

 

The number of current pulses is equal to the frequency of the AC source because one current pulse passes through the diode for one oscillation of the AC source.

shaalaa.com
p-n Junction
  Is there an error in this question or solution?
Chapter 19: Electric Current through Gases - MCQ [Page 352]

APPEARS IN

HC Verma Concepts of Physics Vol. 2 [English] Class 11 and 12
Chapter 19 Electric Current through Gases
MCQ | Q 6 | Page 352

RELATED QUESTIONS

Write the two processes that take place in the formation of a p-n junction.


Draw a circuit diagram to study the input and output characteristics of an n-p-n transistor in its common emitter configuration. Draw the typical input and output characteristics.


The drift current in a reverse-biased p-n junction is increased in magnitude if the temperature of the junction is increased. Explain this on the basis of creation of hole-electron pairs.


In a p-n junction with open ends,
(a) there is no systematic motion of charge carries
(b) holes and conduction electrons systematically go from the p-side to n-side and from the n-side to p-side respectively

(c) there is no net charge transfer between the two sides
(d) there is a constant electric field near the junction.


In a p-n junction,
(a) new holes and conduction electrons are produced continuously throughout the material
(b) new holes and conduction electrons are produced continuously throughout the material except in the depletion region
(c) holes and conduction electrons recombine continuously throughout the material
(d) holes and conduction electrons recombine continuously throughout the material except in the depletion region.


In a p.n junction, the depletion region is 400 nm wide and an electric field of 5 × 105 V m−1 exists in it. (a) Find the height of the potential barrier. (b) What should be the minimum kinetic energy of a conduction electron which can diffuse from the n-side to the p-side?


The potential barrier existing across an unbiased p-n junction is 0.2 volt. What minimum kinetic energy a hole should have to diffuse from the p-side to the n-side if (a) the junction is unbiased, (b) the junction is forward-biased at 0.1 volt and (c) the junction is reverse-biased at 0.1 volt?  


The drift current in a p-n junction is 20.0 µA. Estimate the number of electrons crossing a cross section per second in the depletion region.


The current−voltage characteristic of an ideal p-n junction diode is given by \[i =  i_0 ( e^{eV/KT}  - 1)\] where, the drift current i0 equals 10 µA. Take the temperature T to be 300 K. (a) Find the voltage V0 for which \[e^{eV/kT}  = 100 .\]One can neglect the term 1 for voltages greater than this value. (b) Find an expression for the dynamic resistance of the diode as a function of V for V > V0. (c) Find the voltage for which the dynamic resistance is 0.2 Ω.

(Use Planck constant h = 4.14 × 10-15 eV-s, Boltzmann constant k = 8·62 × 10-5 eV/K.)


Consider a p-n junction diode having the characteristic \[i -  i_0 ( e^{eV/kT}  - 1) \text{ where }  i_0  = 20\mu A\] . The diode is operated at T = 300 K . (a) Find the current through the diode when a voltage of 300 mV is applied across it in forward bias. (b) At what voltage does the current double?


Each of the resistance shown in figure has a value of 20 Ω. Find the equivalent resistance between A and B. Does it depend on whether the point A or B is at higher potential?


What are the readings of the ammeters A1 and A2 shown in figure. Neglect the resistance of the meters.

(Assume that the resistance of each diode is zero in forward bias and is infinity in reverse bias.)


Find the current through the battery in each of the circuits shown in figure.

(Assume that the resistance of each diode is zero in forward bias and is infinity in reverse bias.)


Find the equivalent resistance of the network shown in figure between the points A and B.

(Assume that the resistance of each diode is zero in forward bias and is infinity in reverse bias.)


When the base current in a transistor is changed from 30µA to 80µA, the collector current is changed from 1.0 mA to 3.5 mA. Find the current gain β.


A load resistor of 2kΩ is connected in the collector branch of an amplifier circuit using a transistor in common-emitter mode. The current gain β = 50. The input resistance of the transistor is 0.50 kΩ. If the input current is changed by 50µA. (a) by what amount does the output voltage change, (b) by what amount does the input voltage change and (c) what is the power gain?


If in a p-n junction diode, a square input signal of 10 V is applied as shown Then the output signal across RL will be ______

 


The formation of the depletion region in a p-n junction diode is due to ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×