English
Karnataka Board PUCPUC Science Class 11

The Potential Barrier Existing Across an Unbiased P-n Junction is 0.2 Volt. What Minimum Kinetic Energy a Hole Should Have to Diffuse from the P-side to the N-side - Physics

Advertisements
Advertisements

Question

The potential barrier existing across an unbiased p-n junction is 0.2 volt. What minimum kinetic energy a hole should have to diffuse from the p-side to the n-side if (a) the junction is unbiased, (b) the junction is forward-biased at 0.1 volt and (c) the junction is reverse-biased at 0.1 volt?  

Short Note

Solution

Potential barrier = 0.2 V 

(a) The minimum kinetic energy of the hole should be equal to the band gap of the material.
Band gap = eV
KE = Potential difference × e = 0.2 eV

(b) In forward biassing,
Kinetic energy = Effective potential of the barrier
∴ Kinetic energy = Potential under unbiased condition - Applied voltage
⇒ KE + Ve = 0.2 eV
Here, V is the applied voltage.
⇒ KE = 0.2 − 0.1 = 0.1 eV

(c) In reverse biassing,
Kinetic energy = Effective potential of the barrier
∴ Kinetic energy = Potential under unbiased condition + Applied voltage
⇒ KE − Ve = 0.2 eV
Here, V is the applied voltage.
⇒ KE = 0.2 + 0.1 = 0.3 eV

shaalaa.com
p-n Junction
  Is there an error in this question or solution?
Chapter 23: Semiconductors and Semiconductor Devices - Exercises [Page 419]

APPEARS IN

HC Verma Concepts of Physics Vol. 2 [English] Class 11 and 12
Chapter 23 Semiconductors and Semiconductor Devices
Exercises | Q 17 | Page 419

RELATED QUESTIONS

A zener diode is fabricated by heavily doping both p- and n- sides of the junction. Explain, why?


Explain briefly with the help of necessary diagrams, the forward biasing of a p-n junction diode. Also draw characteristic curves.


A student wants to use two p-n junction diodes to convert alternating current into direct current. Draw the labelled circuit diagram she would use and explain how it works.


Draw a circuit diagram to study the input and output characteristics of an n-p-n transistor in its common emitter configuration. Draw the typical input and output characteristics.


When a p-type impurity is doped in a semiconductor, a large number of holes are created, This does not make the semiconductor charged. But when holes diffuse from the p-side to the n-side in a p-n junction, the n-side gets positively charged. Explain.


The drift current in a reverse-biased p-n junction is increased in magnitude if the temperature of the junction is increased. Explain this on the basis of creation of hole-electron pairs.


If the two ends of a p-n junction are joined by a wire,


The drift current in a p-n junction is


Diffusion current in a p-n junction is greater than the drift current in magnitude


Two identical p-n junction may be connected in series with a battery in three ways. The potential difference across the two p-n junctions are equal in


The drift current in a p-n junction is 20.0 µA. Estimate the number of electrons crossing a cross section per second in the depletion region.


The current−voltage characteristic of an ideal p-n junction diode is given by \[i =  i_0 ( e^{eV/KT}  - 1)\] where, the drift current i0 equals 10 µA. Take the temperature T to be 300 K. (a) Find the voltage V0 for which \[e^{eV/kT}  = 100 .\]One can neglect the term 1 for voltages greater than this value. (b) Find an expression for the dynamic resistance of the diode as a function of V for V > V0. (c) Find the voltage for which the dynamic resistance is 0.2 Ω.

(Use Planck constant h = 4.14 × 10-15 eV-s, Boltzmann constant k = 8·62 × 10-5 eV/K.)


Find the currents through the resistance in the circuits shown in figure. 

(Assume that the resistance of each diode is zero in forward bias and is infinity in reverse bias.)


Find the current through the battery in each of the circuits shown in figure.

(Assume that the resistance of each diode is zero in forward bias and is infinity in reverse bias.)


Draw the current-voltage characteristics for the device show in figure between the terminals A and B.

(Assume that the resistance of each diode is zero in forward bias and is infinity in reverse bias.)


When the base current in a transistor is changed from 30µA to 80µA, the collector current is changed from 1.0 mA to 3.5 mA. Find the current gain β.


In a semiconductor diode, the barrier potential offers opposition to only ______.


During the formation of a p-n junction ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×