English

A man, of mass m, standing at the bottom of the staircase, of height L climbs it and stands at its top. Work done by all forces on man is equal to the rise in potential energy mgL. - Physics

Advertisements
Advertisements

Question

A man, of mass m, standing at the bottom of the staircase, of height L climbs it and stands at its top.

  1. Work done by all forces on man is equal to the rise in potential energy mgL.
  2. Work done by all forces on man is zero.
  3. Work done by the gravitational force on man is mgL.
  4. The reaction force from a step does not do work because the point of application of the force does not move while the force exists.
Short Note

Solution

b and d

Explanation:

When a man of mass m climbs up the staircase of height L, work done by the gravitational force on the man = – mgL

Work done by internal muscular forces = – Work done against gravitational force = mgL

Work done by all the forces = mgL – mgL = 0

As the point of application of the contact forces does not move, hence work done by reaction forces will also be zero.

And work done by friction will also be zero as there a no dissipation or rubbing involved.

shaalaa.com
  Is there an error in this question or solution?
Chapter 6: Work, Energy and Power - Exercises [Page 44]

APPEARS IN

NCERT Exemplar Physics [English] Class 11
Chapter 6 Work, Energy and Power
Exercises | Q 6.19 | Page 44

RELATED QUESTIONS

A water pump lifts water from 10 m below the ground. Water is pumped at a rate of 30 kg/minute with negligible velocity. Calculate the minimum horsepower that the engine should have to do this.

 

In a factory, 2000 kg of metal needs to be lifted by an engine through a distance of 12 m in 1 minute. Find the minimum horsepower of the engine to be used.

 

Consider the situation shown in the following figure. The system is released from rest and the block of mass 1 kg is found to have a speed 0⋅3 m/s after it has descended a distance of 1 m. Find the coefficient of kinetic friction between the block and the table.


A block of mass 100 g is moved with a speed of 5⋅0 m/s at the highest point in a closed circular tube of radius 10 cm kept in a vertical plane. The cross-section of the tube is such that the block just fits in it. The block makes several oscillations inside the tube and finally stops at the lowest point. Find the work done by the tube on the block during the process.


A small block of mass 200 g is kept at the top of a frictionless incline which is 10 m long and 3⋅2 m high. How much work was required (a) to lift the block from the ground and put it an the top, (b) to slide the block up the incline? What will be the speed of the block when it reaches the ground if (c) it falls off the incline and drops vertically to the ground (d) it slides down the incline? Take g = 10 m/s2


A block of mass 5 kg is suspended from the end of a vertical spring which is stretched by 10 cm under the load of the block. The block is given a sharp impulse from below, so that it acquires an upward speed of 2 m/s. How high will it rise? Take g = 10 m/s2


A block of mass 250 g is kept on a vertical spring of spring constant 100 N/m fixed from below. The spring is now compressed 10 cm shorter than its natural length and the system is released from this position. How high does the block rise ? Take g = 10 m/s2.  

 

A simple pendulum of length L with a bob of mass m is deflected from its rest position by an angle θ and released (following figure). The string hits a peg which is fixed at a distance x below the point of suspension and the bob starts going in a circle centred at the peg. (a) Assuming that initially the bob has a height less than the peg, show that the maximum height reached by the bob equals its  initial height. (b) If the pendulum is released with \[\theta = 90^\circ \text{ and x = L}/2\] , find the maximum height reached by the bob above its lowest position before the string becomes slack. (c) Find the minimum value of x/L for which the bob goes in a complete circle about the peg when the pendulum is released from \[\theta = 90^\circ \]


Figure ( following ) shows a smooth track which consists of a straight inclined part of length l joining smoothly with the circular part. A particle of mass m is projected up the incline from its bottom. Find the minimum projection-speed \[\nu_0\] for which the particle reaches the top of the track.


A chain of length l and mass m lies on the surface of a smooth sphere of radius R > l with one end tied to the top of the sphere.  Suppose the chain is released and slides down the sphere. Find the kinetic energy of the chain, when it has slid through an angle θ.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×