English
Karnataka Board PUCPUC Science Class 11

Figure ( Following ) Shows a Smooth Track Which Consists of a Straight Inclined Part of Length L Joining Smoothly with the Circular Part.Find the Minimum Projection-speed ν 0 for Which the Particle - Physics

Advertisements
Advertisements

Question

Figure ( following ) shows a smooth track which consists of a straight inclined part of length l joining smoothly with the circular part. A particle of mass m is projected up the incline from its bottom. Find the minimum projection-speed \[\nu_0\] for which the particle reaches the top of the track.

Numerical

Solution

Net force on the particle at A and B \[F = \text{ mg }\sin \theta\] Work done to reach B from A, \[\text{W = FS = mg} \sin \theta \text{ l }\] Again, work done to reach B to C 

\[= \text{mgh}\] 
\[ = \text{mg R} \left( 1 - \cos \theta \right)\]

So, total work done
\[= \text{mgl} \sin \theta + \text{mgR} \left( 1 - \cos \theta \right)\]
\[ = \text{mg}\left[ \text{l} \sin \theta + R \left( 1 - \cos \theta \right) \right]\]
Now, change in K.E. = Total work done

\[\Rightarrow \frac{1}{2}\text{m}\nu_2^2 = mg \left[ \text{l} \sin \theta + R \left( 1 - \cos \theta \right) \right]\]

\[ \Rightarrow \nu_2 = \sqrt{2g \left[ R \left( 1 - \cos \theta \right) + \text{l} \sin \theta \right]}\]

shaalaa.com
  Is there an error in this question or solution?
Chapter 8: Work and Energy - Exercise [Page 137]

APPEARS IN

HC Verma Concepts of Physics Vol. 1 [English] Class 11 and 12
Chapter 8 Work and Energy
Exercise | Q 62.1 | Page 137

RELATED QUESTIONS

In Figure (i) the man walks 2 m carrying a mass of 15 kg on his hands. In Figure (ii), he walks the same distance pulling the rope behind him. The rope goes over a pulley, and a mass of 15 kg hangs at its other end. In which case is the work done greater?


A ball is given a speed v on a rough horizontal surface. The ball travels through a distance l on the surface and stops. What is the work done by the kinetic friction? 


Consider the situation of the previous question from a frame moving with a speed v0 parallel to the initial velocity of the block. (a) What are the initial and final kinetic energies? (b) What is the work done by the kinetic friction? 

 

The US athlete Florence Griffith-Joyner won the 100 m sprint gold medal at Seoul Olympics in 1988, setting a new Olympic record of 10⋅54 s. Assume that she achieved her maximum speed in a very short time and then ran the race with that speed till she crossed the line. Take her mass to be 50 kg. Calculate the kinetic energy of Griffith-Joyner at her full speed. 


The US athlete Florence Griffith-Joyner won the 100 m sprint gold medal at Seoul Olympics in 1988, setting a new Olympic record of 10⋅54 s. Assume that she achieved her maximum speed in a very short time and then ran the race with that speed till she crossed the line. Take her mass to be 50 kg. Assuming that the track, wind etc. offered an average resistance of one-tenth of her weight, calculate the work done by the resistance during the run. 


The US athlete Florence Griffith-Joyner won the 100 m sprint gold medal at Seoul Olympics in 1988, setting a new Olympic record of 10⋅54 s. Assume that she achieved her maximum speed in a very short time and then ran the race with that speed till she crossed the line. Take her mass to be 50 kg.  What power Griffith-Joyner had to exert to maintain uniform speed?


An unruly demonstrator lifts a stone of mass 200 g from the ground and throws it at his opponent. At the time of projection, the stone is 150 cm above the ground and has a speed of 3 m/s. Calculate the work done by the demonstrator during the process. If it takes one second for the demonstrator to lift the stone and throw it, what horsepower does he use? 


A block of mass 30 kg is being brought down by a chain. If the block acquires a speed of 40 cm/s in dropping down 2 m, find the work done by the chain during the process.

 

A block of mass 100 g is moved with a speed of 5⋅0 m/s at the highest point in a closed circular tube of radius 10 cm kept in a vertical plane. The cross-section of the tube is such that the block just fits in it. The block makes several oscillations inside the tube and finally stops at the lowest point. Find the work done by the tube on the block during the process.


A block of mass 5 kg is suspended from the end of a vertical spring which is stretched by 10 cm under the load of the block. The block is given a sharp impulse from below, so that it acquires an upward speed of 2 m/s. How high will it rise? Take g = 10 m/s2


A simple pendulum of length L with a bob of mass m is deflected from its rest position by an angle θ and released (following figure). The string hits a peg which is fixed at a distance x below the point of suspension and the bob starts going in a circle centred at the peg. (a) Assuming that initially the bob has a height less than the peg, show that the maximum height reached by the bob equals its  initial height. (b) If the pendulum is released with \[\theta = 90^\circ \text{ and x = L}/2\] , find the maximum height reached by the bob above its lowest position before the string becomes slack. (c) Find the minimum value of x/L for which the bob goes in a complete circle about the peg when the pendulum is released from \[\theta = 90^\circ \]


A particle slides on the surface of a fixed smooth sphere starting from the topmost point. Find the angle rotated by the radius through the particle, when it leaves contact with the sphere.

 

A chain of length l and mass m lies on the surface of a smooth sphere of radius R > l with one end tied to the top of the sphere.  Suppose the chain is released and slides down the sphere. Find the kinetic energy of the chain, when it has slid through an angle θ.


An electron and a proton are moving under the influence of mutual forces. In calculating the change in the kinetic energy of the system during motion, one ignores the magnetic force of one on another. This is because ______.


Give example of a situation in which an applied force does not result in a change in kinetic energy.


Two bodies of unequal mass are moving in the same direction with equal kinetic energy. The two bodies are brought to rest by applying retarding force of same magnitude. How would the distance moved by them before coming to rest compare?


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×