English

Give example of a situation in which an applied force does not result in a change in kinetic energy. - Physics

Advertisements
Advertisements

Question

Give example of a situation in which an applied force does not result in a change in kinetic energy.

Short Note

Solution

Assume a ball is tied to a string and is moving in a vertical circle. Work done by tension force will be zero and hence tension force will not cause any change in KE of the ball. Because at any instant of time the displacement is tangential and the force is central in nature, i.e., the tension in the string and the small displacement at any instant are perpendicular to each other.

shaalaa.com
  Is there an error in this question or solution?
Chapter 6: Work, Energy and Power - Exercises [Page 46]

APPEARS IN

NCERT Exemplar Physics [English] Class 11
Chapter 6 Work, Energy and Power
Exercises | Q 6.31 | Page 46

RELATED QUESTIONS

An unruly demonstrator lifts a stone of mass 200 g from the ground and throws it at his opponent. At the time of projection, the stone is 150 cm above the ground and has a speed of 3 m/s. Calculate the work done by the demonstrator during the process. If it takes one second for the demonstrator to lift the stone and throw it, what horsepower does he use? 


Consider the situation shown in the following figure. The system is released from rest and the block of mass 1 kg is found to have a speed 0⋅3 m/s after it has descended a distance of 1 m. Find the coefficient of kinetic friction between the block and the table.


A block weighing 10 N travels down a smooth curved track AB joined to a rough horizontal surface (In the following figure). The rough surface has a friction coefficient of 0⋅20 with the block. If the block starts slipping on the track from a point 1⋅0 m above the horizontal surface, how far will it move on the rough surface?


A block of mass 5 kg is suspended from the end of a vertical spring which is stretched by 10 cm under the load of the block. The block is given a sharp impulse from below, so that it acquires an upward speed of 2 m/s. How high will it rise? Take g = 10 m/s2


A heavy particle is suspended by a 1⋅5 m long string. It is given a horizontal velocity of \[\sqrt{57} \text{m/s}\] (a) Find the angle made by the string with the upward vertical when it becomes slack. (b) Find the speed of the particle at this instant. (c) Find the maximum height reached by the particle over the point of suspension. Take g = 10 m/s2

 

A particle of mass m is kept on the top of a smooth sphere of radius R. It is given a sharp impulse which imparts it a horizontal speed ν. (a) Find the normal force between the sphere and the particle just after the impulse. (b) What should be the minimum value of ν for which the particle does not slip on the sphere? (c) Assuming the velocity ν to be half the minimum calculated in part, (b) find the angle made by the radius through the particle with the vertical when it leaves the sphere.


Figure ( following ) shows a smooth track which consists of a straight inclined part of length l joining smoothly with the circular part. A particle of mass m is projected up the incline from its bottom. Find the minimum projection-speed \[\nu_0\] for which the particle reaches the top of the track.


A chain of length l and mass m lies on the surface of a smooth sphere of radius R > l with one end tied to the top of the sphere.  Find the gravitational potential energy of the chain with reference level at the centre of the sphere.


A man, of mass m, standing at the bottom of the staircase, of height L climbs it and stands at its top.

  1. Work done by all forces on man is equal to the rise in potential energy mgL.
  2. Work done by all forces on man is zero.
  3. Work done by the gravitational force on man is mgL.
  4. The reaction force from a step does not do work because the point of application of the force does not move while the force exists.

Two bodies of unequal mass are moving in the same direction with equal kinetic energy. The two bodies are brought to rest by applying retarding force of same magnitude. How would the distance moved by them before coming to rest compare?


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×