English

A motor boat can travel 30 km upstream and 28 km downstream in 7 hours. It can travel 21 km upstream and return in 5 hours. Find the speed of the boat in still water and the speed of the stream. - Mathematics

Advertisements
Advertisements

Question

A motor boat can travel 30 km upstream and 28 km downstream in 7 hours. It can travel 21 km upstream and return in 5 hours. Find the speed of the boat in still water and the speed of the stream.

Sum

Solution

Let the speed of the motorboat in still water and the speed of the stream are u km/h and v km/h, respectively

Then, downstream speed of motorboat = (u + v) km/h

And upstream speed of motorboat = (u – v) km/h

Time taken to travel 30 km upstream,

t1 = `30/(u - v)` hours  ...`[because  "Speed" = "Distance"/"Time"]`

And time taken to travel 28 km downstream,

t2 = `28/(u + v)` hours

By first condition,

t1 + t2 = 7 hours

⇒ `30/(u - v) + 2/(u + v)` = 7

Now, time taken to travel 21 km upstream,

t3 = `21/(u - v)` hours

And time taken to travel 21 km downstream,

t4 = `21/(u + v)` hours

By second condition,

t4 + t3 = 5 hours

⇒ `21/(u + v) + 21/(u - v)` = 5  ....(ii)

Let x = `1/(u + v)` and y = `1/(u - v)`

Equation (i) and equation (ii) becomes,

30x + 28y = 7 ......(iii)

and 21x + 21y = 5

⇒ x + y = `5/21`   .....(iv)

Now, multiplying in equation (iv) by 28 and then subtracting from equation (iii), we get

(30x – 28y) – (28x + 28y) = `7 - 140/21`

⇒ 2x = `7 - 20/3`

⇒ 2x = `1/3`

⇒ x = `1/6`

On putting the value of x in equation (iv), we get

`1/6 + y = 5/21`

⇒ y = `5/21 - 1/6`

= `(10 - 7)/42`

= `3/42`

⇒ y = `1/14`

Now, x = `1/(u + v) = 1/6`

⇒ u + v = 6  ....(v)

And y = `1/(u - v) = 1/14`

⇒ u – v = 14  ....(vi)

Now, adding equation (v) and equation (vi), we get

2u = 20

⇒ u = 10

On putting the value of u in equation (v), we get

10 + v = 6

⇒ v = – 4

Hence, the speed of the motorboat in still water is 10 km/h and the speed of the stream 4 km/h.

shaalaa.com
  Is there an error in this question or solution?
Chapter 3: Pair of Liner Equation in Two Variable - Exercise 3.4 [Page 34]

APPEARS IN

NCERT Exemplar Mathematics [English] Class 10
Chapter 3 Pair of Liner Equation in Two Variable
Exercise 3.4 | Q 8 | Page 34
Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×