English
Karnataka Board PUCPUC Science 2nd PUC Class 12

A silver wire has a resistance of 2.1 Ω at 27.5°C, and a resistance of 2.7 Ω at 100°C. Determine the temperature coefficient of resistivity of silver. - Physics

Advertisements
Advertisements

Question

A silver wire has a resistance of 2.1 Ω at 27.5°C, and a resistance of 2.7 Ω at 100°C. Determine the temperature coefficient of resistivity of silver.

Numerical

Solution

Temperature, T1 = 27.5°C

Resistance of the silver wire at T1, R1 = 2.1 Ω

Temperature, T2 = 100°C

Resistance of the silver wire at T2, R2 = 2.7 Ω

Temperature coefficient of silver = α

It is related with temperature and resistance as

α = `("R"_2 - "R"_1)/("R"_2("T"_2 - "T"_1))`

= `(2.7 - 2.1)/(2.1(100 - 27.5))`

= `0.6/152.25`

= 0.0039°C−1

Therefore, the temperature coefficient of silver is 0.0039°C−1.

shaalaa.com
Temperature Dependence of Resistance
  Is there an error in this question or solution?
Chapter 3: Current Electricity - Exercise [Page 127]

APPEARS IN

NCERT Physics [English] Class 12
Chapter 3 Current Electricity
Exercise | Q 3.7 | Page 127
NCERT Physics [English] Class 12
Chapter 3 Current Electricity
Exercise | Q 7 | Page 127

RELATED QUESTIONS

A heating element using nichrome connected to a 230 V supply draws an initial current of 3.2 A which settles after a few seconds to a steady value of 2.8 A. What is the steady temperature of the heating element if the room temperature is 27.0°C? The temperature coefficient of resistance of nichrome averaged over the temperature range involved is 1.70 × 10−4 °C−1.


The order of coloured rings in a carbon resistor is red, yellow, blue and silver. The resistance of the
carbon resistor is:

a) 24 x 106 Ω ± 5%

b) 24 x 106 Ω ± 10%

c) 34 x 104 Ω ± 10%

d) 26 x 104 Ω ± 5%


Show variation of resistivity of Si with temperature in a graph ?


Consider a circuit containing an ideal battery connected to a resistor. Do "work done by the battery" and "the thermal energy developed" represent two names of the same physical quantity?


A non-ideal battery is connected to a resistor. Is work done by the battery equal to the thermal energy developed in the resistor? Will your answer change if the battery is ideal?


When a current passes through a resistor, its temperature increases. Is it an adiabatic process?


As temperature increases, the viscosity of liquids decreases considerably. Will this decrease the resistance of an electrolyte as the temperature increases?


Consider the following statements regarding a thermocouple.
(A) The neutral temperature does not depend on the temperature of the cold junction.
(B) The inversion temperature does not depend on the temperature of the cold junction.


The figure shows an electrolyte of AgCl through which a current is passed. It is observed that 2.68 g of silver is deposited in 10 minutes on the cathode. Find the heat developed in the 20 Ω resistor during this period. Atomic weight of silver is 107.9 g/mol−1.


A carbon resistor has coloured bands as shown in Figure 2 below. The resistance of the resistor is: 

figure 2


A metallic wire has a resistance of 3.0 Ω at 0°C and 4.8 Ω at 150°C. Find the temperature coefficient of resistance of its material.


A variable resistor R is connected across a cell of emf ε and internal resistance r as shown in the figure. Draw a plot showing the variation of
(i) Terminal voltage V and
(ii) the current I, as a function of R.


In the absence of an electric field, the mean velocity of free electrons in a conductor at absolute temperature (T) is ______.

The example of non-ohmic resistance is ______.

Appliances based on heating effect of current work on ______.

By increasing the temperature, the specific resistance of a conductor and a semiconductor -


The higher and lower fixed points on a thermometer are separated by 160 mm. When the length of the mercury thread above the lower point is 40 mm, the temperature reading would be :


Temperature dependence of resistivity ρ(T) of semiconductors, insulators and metals is significantly based on the following factors:

  1. number of charge carriers can change with temperature T.
  2. time interval between two successive collisions can depend on T.
  3. length of material can be a function of T.
  4. mass of carriers is a function of T.

Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×