English

आकृति में, AB एक वृत्त की जीवा है तथा AOC वृत्त का व्यास इस प्रकार है कि ∠ACB = 50° है। यदि AT बिंदु A पर वृत्त की स्पर्श रेखा है, तो ∠BAT बराबर ______ है। - Mathematics (गणित)

Advertisements
Advertisements

Question

आकृति में, AB एक वृत्त की जीवा है तथा AOC वृत्त का व्यास इस प्रकार है कि ∠ACB = 50° है। यदि AT बिंदु A पर वृत्त की स्पर्श रेखा है, तो ∠BAT बराबर ______ है।

Options

  • 65°

  • 60°

  • 50°

  • 40°

MCQ
Fill in the Blanks

Solution

आकृति में, AB एक वृत्त की जीवा है तथा AOC वृत्त का व्यास इस प्रकार है कि  ∠ACB = 50° है। यदि AT बिंदु A पर वृत्त की स्पर्श रेखा है, तो ∠BAT बराबर है 50° है।

स्पष्टीकरण:


आकृति में, AOC वृत्त का एक व्यास है।

हम जानते हैं कि, व्यास वृत्त पर 90° का कोण बनाता है।

तो, ∠ABC = 90°

ΔACB में,

∠A + ∠B + ∠C = 180°  ...[चूँकि, त्रिभुज के सभी कोणों का योग 180° होता है।]

⇒ ∠A + 90° + 50° = 180°

⇒ ∠A + 140° = 180°

⇒ ∠A = 180° – 140° = 40°

∠A या ∠OAB = 40°

अब, AT बिंदु A पर वृत्त की स्पर्श रेखा है।

तो, OA, AT पर लंबवत है।

∴ ∠OAT = 90°   ...[आकृति से]

⇒ ∠OAB + ∠BAT = 90°

∠OAB = 40° रखने पर, हमें प्राप्त होता है।

⇒ ∠BAT = 90° – 40° = 50°

अतः, ∠BAT का मान = 50° है।

shaalaa.com
भूमिका: वृत्त
  Is there an error in this question or solution?
Chapter 9: वृत्त - प्रश्नावली 9.1 [Page 104]

APPEARS IN

NCERT Exemplar Mathematics [Hindi] Class 10
Chapter 9 वृत्त
प्रश्नावली 9.1 | Q 3. | Page 104

RELATED QUESTIONS

किसी वृत की स्पर्श रेखा उसे _____ बिन्दुओं पर प्रतिच्छेद करती है।


वृत्त तथा उसकी स्पर्श रेखा के उभयनिष्ठ बिन्दु को _______ कहते हैं।


एक वृत्त खींचिए और दो एक दी गई रेखा के समांतर दो ऐसी रेखाएँ खींचिए कि उनमें से एक स्पर्श रेखा हो तथा दूसरी छेदक रेखा हो।


आकृति में, यदि PA और PB केंद्र O वाले वृत्त पर स्पर्श रेखाएँ इस प्रकार हैं कि ∠APB = 50° हैं, तब ∠OAB बराबर ______ है।


किसी बाहरी बिंदु से एक वृत्त पर खींची गई स्पर्श रेखा की लंबाई सदैव उसकी त्रिज्या से बड़ी होती है।


AB = AC वाले एक समद्विबाहु त्रिभुज ABC के शीर्ष A पर त्रिभुज के परिवृत्त पर खींची गई स्पर्श रेखा भुजा BC के समांतर होती है।


यदि कई वृत्त एक रेखाखंड PQ के अंत बिंदुओं P और Q से होकर जाते हैं, तो उनके केंद्र PQ के लंब समद्विभाजक पर स्थित होते है।


AB एक वृत्त का व्यास है और AC उसकी एक जीवा इस प्रकार है कि ∠BAC = 30° है। यदि C पर खींची गई स्पर्श रेखा बढ़ाई गई AB से D पर मिलती है, तो BC = BD होगा।


यदि एक षड्भुज ABCDEF एक वृत्त के परिगत है, तो सिद्ध कीजिए कि AB + CD + EF = BC + DE + FA है। 


एक समकोण त्रिभुज ABC, जिसमें ∠B = 90° है, AB को व्यास मान कर एक वृत्त खींचा गया है, जो कर्ण AC को P पर प्रतिच्छेद करता है। सिद्ध कीजिए कि P पर वृत्त की स्पर्श रेखा BC को समद्विभाजित करती है। 


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×