Advertisements
Advertisements
Question
आकृति में ∠DFE = 90°, रेख FG ⊥ रेख ED. यदि GD = 8, FG = 12, तो (1) EG (2) FD (3) EF का मान ज्ञात कीजिए।
Solution
(i) ΔDEF में,
∠DFE = 90° ..............(दिया है)
रेख FG ⊥ कर्ण DE ...............(दिया है)
∴ ज्यामितीय माध्य के गुणधर्म से,
FG2 = DG × EG
∴ 122 = 8 × EG
∴ EG = `(12 xx 12)/8`
∴ EG = 18.
(ii) ΔDGF में, ∠DGF = 90° ..............(दिया है)
∴ पायथागोरस के प्रमेय से,
FD2 = DG2 + GF2
∴ FD2 = 82 + 122
∴ FD2 = 64 + 144
FD2 = 208
∴ FD = `4sqrt13`. ........(दोनों पक्षों का वर्गमूल लेने पर)
(iii) ΔEGF में, ∠EGF = 90° ..............(दिया है)
∴ पायथागोरस के प्रमेय से,
EF2 = EG2 + GF2
∴ EF2 = 182 + 122
EF2 = 324 + 144
EF2 = 468
∴ EF = `6sqrt13` ....................(दोनों पक्षों का वर्गमूल लेने पर)
∴ EG = 18, FD = `underline(4sqrt13)` और EF = `underline(6sqrt13)`.
APPEARS IN
RELATED QUESTIONS
किसी आयत की लंबाई 35 सेमी तथा चौड़ाई 12 सेमी हो तो उस आयत के विकर्ण की लंबाई ज्ञात कीजिए।
किसी रास्ते के दोनों ओर स्थित घरों की दीवारें एक दूसरे के समांतर हैं। 5.8 मी लंबाई वाली सीढी़ का सिरा रास्ते पर हो और उसका ऊपरी सिरा घर के 4 मीटर ऊँचाई पर स्थित खिड़की तक पहुँचता है। उसी स्थान से सीढी़ को रास्ते के दूसरी ओर झुकाने पर उसका ऊपरी सिरा दूसरे घर के 4.2 मीटर ऊँचाई पर स्थित खिड़की तक पहुँचता हो तो रास्ते की चौड़ाई ज्ञात कीजिए।
आकृति में दर्शाएनुसार बिंदु T यह आयत PQRS के अंतर्भाग में स्थित है। तो सिद्ध कीजिए कि, TS2 + TQ2 = TP2 + TR2 (आकृति में दर्शाएअनुसार रेख AB || भुजा SR ऐसा खींचिए कि A-T-B)
निम्नलिखित बहुवैकल्पिक प्रश्न के दिए गए उत्तरों में से उचित विकल्प चुनकर लिखिए।
a, b, c भुजावाले त्रिभुज में यदि a2 + b2 = c2 हो तो वह त्रिभुज किस प्रकार का होगा?
किसी समकोण त्रिभुज में समकोण बनाने वाली भुजाएँ क्रमश: 9 सेमी तथा 12 सेमी हों तो उस त्रिभुज के कर्ण की लंबाई ज्ञात कीजिए।
किसी आयत का क्षेत्रफल 192 वर्ग सेमी तथा उसकी लंबाई 16 सेमी हो, तो उस आयत के विकर्ण की लंबाई ज्ञात कीजिए।
ΔABC में ∠BAC = 90°, रेख BL तथा रेख CM, यह ΔABC की माध्यिकाएँ हों तो सिद्ध कीजिए कि, 4(BL2 + CM2) = 5 BC2
ΔABC में रेख AD ⊥ रेख BC और DB = 3CD, तो सिद्ध कीजिए कि : 2AB2 = 2AC2 + BC2
किसी समद्विबाहु त्रिभुज में सर्वांगसम भुजाओं की लंबाई 13 सेमी तथा आधार की लंबाई 10 सेमी हो तो उस त्रिभुज की माध्यिकाओं के संगमन बिंदु से आधार के सम्मुख शीर्षबिंदु तक की दूरी ज्ञात कीजिए।
यदि वर्ग के विकर्ण की लंबाई 10`sqrt2` सेमी हो, तो उस वर्ग की भुजा की लंबाई ज्ञात कीजिए।