Advertisements
Advertisements
Question
आकृतीचे निरीक्षण करा. ∆ABC व ∆PQR कोणत्या कसोटीनुसार समरूप आहेत? कसोटीचे नाव लिहा.
Solution
∆ABC आणि ∆PQR मध्ये,
∠ABC ≅ ∠PQR ..........[प्रत्येक कोन 60° चा]
∠ACB ≅ ∠PRQ ...........[प्रत्येक कोन 30° चा]
∴ ∆ABC ~ ∆PQR .............[समरूपतेची कोको कसोटी]
APPEARS IN
RELATED QUESTIONS
आकृती मधील त्रिकोण समरूप आहेत का? असतील तर कोणत्या कसोटीनुसार?
आकृती मध्ये दाखवल्याप्रमाणे 8 मीटर व 4 मीटर उंचीचे दोन खांब सपाट जमिनीवर उभे आहेत. सूर्यप्रकाशाने लहान खांबाची सावली 6 मीटर पडते, तर त्याच वेळी मोठ्या खांबाची सावली किती लांबीची असेल?
Δ ABC मध्ये AP ⊥ BC, BQ ⊥ AC B-P-C, A-Q-C तर, Δ CPA ∼ Δ CQB दाखवा. जर AP = 7, BQ = 8, BC = 12 तर AC काढा.
आकृतीत Δ ABC मध्ये बाजू BC वर D हा बिंदू असा आहे, की ∠BAC = ∠ADC तर सिद्ध करा, CA2 = CB × CD.
आकृती मध्ये रेख PQ || रेख DE, A (Δ PQF) = 20 एकक, जर PF = 2 DP आहे, तर A(`square"DPQE"`) काढण्यासाठी खालील कृती पूर्ण करा.
A(Δ PQF) = 20 एकक, PF = 2 DP, DP = x मानू. ∴ PF = 2x
DF = DP + `square` = `square` + `square` = 3x
Δ FDE व Δ FPQ मध्ये
∠ FDE ≅ ∠`square` (संगत कोन)
∠ FED ≅ ∠`square` (संगत कोन)
∴ Δ FDE ∼ Δ FPQ .............(कोको कसोटी)
∴ `("A"(Δ"FDE"))/("A"(Δ"FPQ")) = square/square = ((3"x")^2)/((2"x")^2) = 9/4`
A(Δ FDE) = `9/4` × A(Δ FPQ ) = `9/4 xx square = square`
A(`square` DPQE) = A(Δ FDE) - A(Δ FPQ)
= `square - square`
= `square`
खालीलपैकी कोणती कसोटी समरूपतेची नाही?
शेजारील आकृतीमध्ये, BP लंब AC, CQ लंब AB, A-P-C आणि A-Q-B, तर ∆APB व ∆AQC समरूप दाखवा.
∆APB व ∆AQC मध्ये,
∠APB = `square^circ` ......(i)
∠AQC = `square^circ` ......(ii)
∠APB ≅ ∠AQC …[(i) व (ii) वरून]
∠PAB ≅ ∠QAC .............` square`
∆APB ~ ∆AQC .............` square`
चौकोन ABCD मध्ये बाजू AD || BC, कर्ण AC आणि BD परस्परांना P बिंदूत छेदतात, तर सिद्ध करा, की `"AP"/"PD" = "PC"/"BP".`
जर ΔABC ∼ ΔDEF आणि ∠A = 48°, तर ∠D = ______.
समलंब चौकोन ABCD मध्ये बाजू AB || बाजू CD चौकोनाचे कर्ण हे एकमेकांना बिंदू P मध्ये छेदतात.
त्यावरून खालील प्रश्नांची उत्तरे लिहा:
- वरील दिलेल्या माहितीवरून आकृती काढा.
- व्युत्क्रम कोन व विरुद्ध कोनांची प्रत्येकी एक जोडी लिहा.
- समरूप त्रिकोणांची नावे समरूपतेच्या कसोटीसह लिहा.