English

समलंब चौकोन ABCD मध्ये बाजू AB || बाजू CD चौकोनाचे कर्ण हे एकमेकांना बिंदू P मध्ये छेदतात. त्यावरून खालील प्रश्‍नांची उत्तरे लिहा: वरील दिलेल्या माहितीवरून आकृती काढा. - Mathematics 2 - Geometry [गणित २ - भूमिती]

Advertisements
Advertisements

Question

समलंब चौकोन ABCD मध्ये बाजू AB || बाजू CD चौकोनाचे कर्ण हे एकमेकांना बिंदू P मध्ये छेदतात.

त्यावरून खालील प्रश्‍नांची उत्तरे लिहा:

  1. वरील दिलेल्या माहितीवरून आकृती काढा.
  2. व्युत्क्रम कोन व विरुद्ध कोनांची प्रत्येकी एक जोडी लिहा.
  3. समरूप त्रिकोणांची नावे समरूपतेच्या कसोटीसह लिहा.
Sum

Solution

(a)

(b) रेख BA || CD  व रेख AC ही त्यांची छेदिका आहे.

∴ ∠BAC ≅ ∠DCA   ...(व्युत्क्रम कोन)

∴ ∠BAP ≅ ∠DCP   ...(i) [A-P-C]

तसेच, ∠BPA ≅ ∠CPD   ...(ii) [परस्पर विरूद्ध कोन]

(c) ΔBPA ≅ ΔCPD मध्ये,

∠BAP ≅ ∠DCP   ...[(i) वरून]

∠BPA ≅ ∠CPD   ...[(ii) वरून]

∴ ΔBPA ∼ ΔCPD   ...[समरूपतेची कोको कसोटी]

shaalaa.com
त्रिकोणांच्या समरूपतेच्या कसोट्या
  Is there an error in this question or solution?
2023-2024 (March) Official

RELATED QUESTIONS

आकृतीत रेख AC व रेख BD परस्परांना P बिंदूत छेदतात आणि `"AP"/"CP" = "BP"/"DP"` तर सिद्ध करा, ΔABP ∼ ΔCDP.


आकृतीत Δ ABC मध्ये बाजू BC वर D हा बिंदू असा आहे, की ∠BAC = ∠ADC तर सिद्ध करा, CA2 = CB × CD.

 


जर ΔDEF व ΔPQR मध्ये, ∠D ≅ ∠Q, ∠R ≅ ∠E, तर खालीलपैकी असत्य विधान कोणते?


आकृती मध्ये XY || बाजू AC. जर 2AX = 3BX आणि XY = 9 तर AC ची किंमत काढण्यासाठी खालील कृती पूर्ण करा.

कृती : 2AX = 3BX 

∴ `"AX"/"BX" = square/square`

`("AX" + "BX")/"BX" = (square +  square)/square` ......(योग क्रिया करून)

`"AB"/"BX" = square/square` ......(I)

ΔBCA ~ ΔBYX .......(समरूपतेची `square` कसोटी)

∴ `"BA"/"BX" = "AC"/"XY"` ..........(समरूप त्रिकोणाच्या संगत बाजू)

∴ `square/square = "AC"/9`

∴ AC = `square` ..........(I) वरून


खालीलपैकी कोणती कसोटी समरूपतेची नाही?


आकृतीचे निरीक्षण करून त्रिकोण समरूप आहेत का ते ठरवा. असल्यास समरूपता कसोटी लिहा. ∠P = 35°, ∠X = 35° व ∠Q = 60°, ∠Y = 60° 

 


आकृतीचे निरीक्षण करून कृती पूर्ण करा.

आकृतीमध्ये, ∠B = 75°, ∠D = 75°

∠B ≅ ______ .............[प्रत्येकी 75°]

∠C ≅ ∠C ..................[______]

∆ABC ~ ∆[______]  ..............[______ समरूपता कसोटीनुसार] 

 


आकृतीमध्ये त्रिकोण ABC मध्ये बाजू BC वर D हा बिंदू असा आहे, की ∠BAC = ∠ADC. तर सिद्ध करा, की CA2 = CB × CD. 

  


वरील आकृतीत, ΔABC मध्ये रेख XY || बाजू  AC, जर 2AX = 3BX आणि XY = 9, तर AC ची किंमत काढा.


□ABCD हा समांतरभुज चौकोन आहे. बिंदू P हा बाजू CD चा मध्यबिंदू आहे. रेख BP कर्ण AC ला बिंदू X मध्ये छेदतो, तर सिद्ध करा: 3AX = 2AC

Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×