English

ABCD एक समचतुर्भुज है और P, Q, R और S क्रमशः भुजाओं AB, BC, CD और DA के मध्य-बिंदु है। दर्शाइए कि चतुर्भुज PQRS एक आयत है। - Mathematics (गणित)

Advertisements
Advertisements

Question

ABCD एक समचतुर्भुज है और P, Q, R और S क्रमशः भुजाओं AB, BC, CD और DA के मध्य-बिंदु है। दर्शाइए कि चतुर्भुज PQRS एक आयत है।

Sum

Solution

ΔABC में, P और Q क्रमशः भुजाओं AB और BC के मध्य-बिंदु हैं।

PQ || AC और PQ = `1/2AC`      ...(मध्य-बिंदु प्रमेय का उपयोग करके)     ...(1)

ΔADC में,

R और S क्रमशः CD और AD के मध्य-बिंदु हैं।

∴ RS || AC और RS = `1/2 AC`     ...(मध्य-बिंदु प्रमेय का उपयोग करके)   ...(2)

समीकरण (1) और (2) से, हम प्राप्त करते हैं

PQ || RS और PQ = RS

चूँकि चतुर्भुज PQRS में, सम्मुख भुजाओं का एक युग्म बराबर और समांतर होता है एक दूसरे को, यह एक समांतर चतुर्भुज है।

मान लीजिए समचतुर्भुज ABCD के विकर्ण एक दूसरे को बिंदु O पर प्रतिच्छेद करते हैं।

चतुर्भुज OMQN में, 

MQ || ON      ...(∵ PQ || AC)

QN || OM     ...(∵ QR || BD)

अतः OMQN एक समांतर चतुर्भुज है।

⇒ ∠MQN = ∠NOM

⇒ ∠PQR = ∠NOM

हालाँकि, ∠NOM = 90°    ...(एक समचर्तुभुज के विकर्ण परस्पर लंब हैं।)

∴ ∠PQR = 90°

स्पष्टत:, PQRS एक समांतर चतुर्भुज है जिसका एक अंत: कोण 90° है।

अत:, PQRS एक आयत है।

shaalaa.com
त्रिभुज की दो भुजाओं के मध्यबिंदुओं का प्रमेय
  Is there an error in this question or solution?
Chapter 8: चतुर्भुज - प्रश्नावली 8.2 [Page 180]

APPEARS IN

NCERT Mathematics [Hindi] Class 9
Chapter 8 चतुर्भुज
प्रश्नावली 8.2 | Q 2. | Page 180

RELATED QUESTIONS

ABCD एक चतुर्भुज है जिसमें P, Q, R और S क्रमश: भुजाओं AB, BC, CD और DA के मध्य-बिंदु हैं (देखिए आकृति में)। AC उसका एक विकर्ण है। दर्शाइए कि

  1. SR || AC और SR = `1/2 AC` है।
  2. PQ = SR है।
  3. PQRS एक समांतर चतुर्भुज है।


ABCD एक आयत है, जिसमें P, Q, R और S क्रमश: भुजाओं AB, BC, CD और DA के मध्य-बिंदु हैं। दर्शाइए कि चतुर्भुज PQRS एक समचतुर्भुज है।


ABCD एक समलंब है, जिसमें AB || DC है। साथ ही, BD एक विकर्ण है और E भुजा AD का मध्य-बिंदु है। E से होकर एक रेखा AB के समांतर खींची गई है, जो BC को F पर प्रतिच्छेद करती है (देखिए आकृति में)। दर्शाइए कि F भुजा BC का मध्य-बिंदु है।


दर्शाइए कि किसी चतुर्भुज की सम्मुख भुजाओं के मध्य-बिंदुओं को मिलाने वाले रेखाखंड परस्पर समद्विभाजित करते हैं।


ABC एक त्रिभुज है जिसका कोण C समकोण है। कर्ण AB के मध्य-बिंदु M से होकर BC के समांतर खींची गई रेखा AC को D पर प्रतिच्छेद करती है। दर्शाइए कि

  1. D भुजा AC का मध्य-बिंदु है। 
  2. MD ⊥ AC है। 
  3. CM = MA = `1/2 AB` है।

आकृति में ΔABC मे बिंदु X, Y, Z यह क्रमशः भुजाओं AB, BC तथा AC के मध्यबिंदु है। AB = 5 सेमी, AC = 9 सेमी तथा BC = 11 सेमी, तो XY, YZ, XZ की लंबाई ज्ञात कीजिए।


आकृति में ΔABC समबाहु त्रिभुज है जिसमें बिंदु F, D, E यह क्रमशः भुजा AB, भुजा BC, भुजा AC के मध्यबिंदु हैं तो सिद्ध कीजिए कि ΔFED यह समबाहु त्रिभुज है।


आकृति में रेख PD यह ΔPQR की माध्यिका है। बिंदु T यह PD का मध्यबिंदु है। QT को आगे बढ़ाने पर यह PR को बिंदु M पर प्रतिच्छेदित करता है। तो सिदघ कीजिए कि `"PR"/"PM" = 1/3`

[सूचना: DN || QM खींचें।]


संलग्न आकृति में `square` ABCD समलंब चतुर्भुज है। AB || DC है। रेख AD तथा रेख BC के मध्यबिंदु क्रमशः P तथा Q हैं, तो सिद्ध कीजिए कि PQ || AB तथा PQ = `1/2` (AB + DC)


संलग्न आकृति में `square` ABCD यह समलंब चतुर्भुज है। AB || DC, बिंदु M तथा बिंदु N क्रमशः विकर्ण AC तथा विकर्ण DB के मध्यबिंदु है तो सिद्ध कीजिए कि MN || AB


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×