Advertisements
Advertisements
Question
ABCD एक समचतुर्भुज है, जिसमें D से AB पर शीर्षलंब AB को समद्विभाजित करता है। समचतुर्भुज के कोण ज्ञात कीजिए।
Solution
माना समचतुर्भुज की भुजाएँ AB = BC = CD = DA = x हैं।
अब, DB से जुड़ें।
ΔALD और ΔBLD में,
∠DLA = ∠DLB = 90°
AL = BL = `x/2` ...[चूंकि, DL, AB का लंब समद्विभाजक है।]
और DL = DL ...[सामान्य पक्ष]
∴ ΔALD ≅ ΔBLD ...[SAS सर्वांगसमता नियम द्वारा]
AD = BD ...[CPCT द्वारा]
अब, △ADB में,
तो, ΔADB एक समबाहु त्रिभुज है।
∴ ∠A = ∠ADB = ∠ABD = 60°
इसी प्रकार, ∆DBC एक समबाहु त्रिभुज है।
∴ ∠C = ∠BDC = ∠BC = 60°
साथ ही, ∠A = ∠C
∴ ∠D = ∠B = 180° – 60° = 120° ...[चूंकि आंतरिक कोणों का योग 180° है।]
APPEARS IN
RELATED QUESTIONS
यदि एक समांतर चतुर्भुज के विकर्ण बराबर हों, तो दर्शाइए कि वह एक आयत है।
समांतर चतुर्भुज ABCD के विकर्ण BD पर दो बिंदु P और Q इस प्रकार स्थित हैं कि DP = BQ है (देखिए आकृति में)। दर्शाइए कि
- ΔAPD ≅ ΔCQB
- AP = CQ
- ΔAQB ≅ ΔCPD
- AQ = CP
- APCQ एक समांतर चतुर्भुज है।
क्या एक चतुर्भुज ABCD समांतर चतुर्भुज हो सकता है यदि AB = DC = 8 cm, AD = 4 cm और BC = 4.4 cm?
क्या एक चतुर्भुज ABCD समांतर चतुर्भुज हो सकता है यदि ∠A = 70° और ∠C = 65°?
एक समांतर चतुर्भुज ABCD के विकर्ण AC और BD परस्पर बिंदु O पर प्रतिच्छेद करते हैं। यदि OA = 3 cm और OD = 2 cm है, तो AC और BD की लंबाई ज्ञात कीजिए।
∆ABC में, AB = 5 cm, BC = 8 cm और CA = 7 cm हैं। यदि D और E क्रमश : AB और BC के मध्य-बिंदु हैं, तो DE की लंबाई निर्धारित कीजिए।
एक चतुर्भुज ABCD के विकर्ण परस्पर समद्विभाजित करते हैं। यदि ∠A = 35° है, तो ∠B निर्धारित कीजिए।
एक समांतर चतुर्भुज की आसन्न भुजाएँ 5 cm और 9 cm है। उसका परिमाप ______ है।
ABCD एक समांतर चतुर्भुज है। कोण A का समद्विभाजक CD को X पर प्रतिच्छेद करता है तथा कोण C का समद्विभाजक AB को Y पर प्रतिच्छेद करता है। क्या AXCY एक समांतर चतुर्भुज है? कारण दीजिए।
समांतर ABCD में, ∠A का समद्विभाजक BC को समद्विभाजित करता है। क्या कोण B का समद्विभाजक AD को भी समद्विभाजित करता है? कारण दीजिए।