English

Alternating emf of e = 220 sin 100 πt is applied to a circuit containing an inductance of (1/π) henry. Write an equation for instantaneous current through the circuit. - Physics

Advertisements
Advertisements

Question

Alternating emf of e = 220 sin 100 πt is applied to a circuit containing an inductance of (1/π) henry. Write an equation for instantaneous current through the circuit. What will be the reading of the AC galvanometer connected in the circuit?

Numerical

Solution

Data: e = 220 sin 100 πt, L = `(1/pi)`H

Comparing e = 220 sin 100 πt with

e = e0 sin ωt, we get

ω = 100 π

∴ ωL = (100 π)`(1/π)` = 100 Ω

∴ The instantaneous current through the circuit

= i = `"e"_0/(omega"L") sin (100π"t" - π/2)`

`= 220/100 sin (100π"t" - π/2)`

= 2.2 sin (100πt - π/2) in ampere 

`"i"_"rms" = "i"_0/sqrt2 = 2.2/1.414 = 1.556 "A"` is the reading of the AC galvanometer connected in the circuit.

shaalaa.com
Power in AC Circuit
  Is there an error in this question or solution?
Chapter 13: AC Circuits - Exercises [Page 305]

APPEARS IN

Balbharati Physics [English] 12 Standard HSC Maharashtra State Board
Chapter 13 AC Circuits
Exercises | Q 16 | Page 305

RELATED QUESTIONS

Obtain an expression for average power dissipated in a purely resistive A.C. circult. 


Answer in brief.

What is wattles current?


When an AC source is connected to an ideal inductor show that the average power supplied by the source over a complete cycle is zero.


Prove that an ideal capacitor in an AC circuit does not dissipate power


An AC source generating a voltage e = e0sinωt is connected to a capacitor of capacitance C. Find the expression for the current i flowing through it. Plot a graph of e and i versus ωt.


A light bulb is rated 100W for 220 V AC supply of 50 Hz. Calculate

  1. resistance of the bulb.
  2. the rms current through the bulb

An AC circuit consists of only an inductor of inductance 2 H. If the current is represented by a sine wave of amplitude 0.25 A and frequency 60 Hz, calculate the effective potential difference across the inductor. (π = 3.142)


A 25 μF capacitor, a 0.10 H inductor, and a 25Ω resistor are connected in series with an AC source whose emf is given by e = 310 sin 314 t (volt). What is the frequency, reactance, impedance, current, and phase angle of the circuit?


A 100 μF capacitor is charged with a 50 V source supply. Then source supply is removed and the capacitor is connected across an inductance, as a result of which 5A current flows through the inductance. Calculate the value of the inductance.


What is meant by wattles current?


Give any one definition of power factor.


An alternating e.m.f. of 0.2 V is applied across an LCR series circuit having R = 4 `Omega`, C = 80 µF and L = 200 mH. At resonance the voltage drop across the inductor is ____________.


In series 'LR' circuit and in series 'RC' circuit, same current is flowing. If the frequency of e.m.f. of a.c. is increased for both the circuits, the impedance will ____________.


In series LCR circuit, resistance is 18 `Omega` and impedance is 33 `Omega`. An r.m.s. voltage of 220 V is applied across the circuit. The true power consumed in a.c. circuit is ____________.


In LCR series circuit, an alternating e.m.f. 'e' and current 'i' are given by the equations e = 100 sin (100 t) volt,

`"i" = 100  "sin" (100"t" + pi/3)"mA"`.

The average power dissipated in the circuit will be ____________.


The voltage gain of a CE amplifier is 50. A sinusoidal ac of amplitude 10 mV is applied as a signal. The output of the amplifier will be ______.


In a series LR circuit XL = R and power factor of the circuit is P1. When capacitor with capacitance C such that XL= XC is put in series, the power factor becomes P2. The ratio `"P"_1/"P"_2` is ______. 


Two unknown resistances are connected in two gaps of a meter-bridge. The null point is obtained at 40 cm from left end. A 30 Ω resistance is connected in series with the smaller of the two resistances, the null point shifts by 20 cm to the right end. The value of smaller resistance Ω is ______.


In series LCR circuit R = 18 Ω and impedance is 33 Ω An rms voltage 220V is applied across the circuit. The ture power consumed in AC circuit is ______.


A conductor lies along the Z-axis at −1.5 ≤ Z ≤ 1.5 m and carries a fixed current of 10.0 A in −az​ direction as (see figure). For a field B = 3.0 × 10−4`"e"^(−0.2"x")`ay ​T, find the power required to move the conductor at constant speed to x = 2.0 m, y = 0 in 5 × 10−3 s. Assume parallel motion along the x-axis.


What is the average value of alternating current over a complete cycle?


The power factor of LCR circuit is ______.


Explain the theory of an AC circuit with a resistor. 


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×