Advertisements
Advertisements
Question
An inductor, a resistance and a capacitor are joined in series with an AC source. As the frequency of the source is slightly increased from a very low value, the reactance
Options
of the inductor increases
of the resistor increases
of the capacitor increases
of the circuit increases
Solution
of the inductor increases
The reactance of an inductor is given by,
`X_L = omegaL`
And the reactance of a capacitor is given by,
`Xc = 1/(omegaC)`
Here, ω = 2πf , where f is the frequency of the source. So, when f increases, ω increases.
∴ XL will increase and XC will decrease.
APPEARS IN
RELATED QUESTIONS
The magnetic field energy in an inductor changes from maximum to minimum value in 5.0 ms when connected to an AC source. The frequency of the source is
An inductor coil of some resistance is connected to an AC source. Which of the following quantities have zero average value over a cycle?
(a) Current
(b) Induced emf in the inductor
(c) Joule heat
(d) Magnetic energy stored in the inductor
Show that in an AC circuit containing a pure inductor, the voltage is ahead of current by π/2 in phase.
A 44 mH inductor is connected to 220 V, 50 Hz ac supply. Determine the rms value of the current in the circuit.
A coil of inductance 0.50 H and resistance 100 Ω is connected to a 240 V, 50 Hz ac supply.
(a) What is the maximum current in the coil?
(b) What is the time lag between the voltage maximum and the current maximum?
Obtain if the circuit is connected to a high-frequency supply (240 V, 10 kHz). Hence, explain the statement that at very high frequency, an inductor in a circuit nearly amounts to an open circuit. How does an inductor behave in a dc circuit after the steady state?
If the frequency of an A.C. is made 4 times of its initial value, the inductive reactance will ______.
A current of 4A flows in a coil when connected to a 12V dc source. If the same coil is connected to a 12V, 50 rad/s a.c. source, a current of 2.4A flows in the circuit. Determine the inductance of the coil.
An inductive circuit contains resistance of 10 ohms and an inductance of 2 henry. If an A.C. voltage of 120 Volts and frequency 60 Hz is applied to this circuit, the current would be nearly ______.
Explain why the reactance offered by an inductor increases with increasing frequency of an alternating voltage.
An ac voltage V = V0 sin ωt is applied across a pure inductor of inductance L. Find an expression for the current i, flowing in the circuit and show mathematically that the current flowing through it lags behind the applied voltage by a phase angle of `π/2`. Also draw graphs of V and i versus ωt for the circuit.
An ideal inductor is connected across an AC source of voltage. The current in the circuit ______.
What is the ratio of inductive and capacitive reactance in an ac circuit?
Draw a phasor diagram showing e and i in the case of a purely inductive circuit. A 40-turn square coil of side 0.2 m is placed in a magnetic field of induction 0.05 T with the plane of the coil perpendicular to the direction of the field. If the magnetic induction is uniformly reduced to zero in 5 milliseconds, find the emf induced in the coil.