English

Answer the following. Explain reverse osmosis. - Chemistry

Advertisements
Advertisements

Question

Answer the following.

Explain reverse osmosis.

Answer in Brief

Solution

i. If a pressure larger than the osmotic pressure is applied to the solution side, then pure solvent from the solution passes into pure solvent side through the semipermeable membrane. This phenomenon is called reverse osmosis.

ii. For example, consider fresh water salt water separated by a semipermeable membrane. When the pressure larger than the osmotic pressure of a solution is applied to solution, pure water from salty water passes into fresh pure water through the membrane. Thus, the direction of osmosis can be reversed by applying a pressure larger than the osmotic pressure.

iii. The schematic set up for reverse osmosis is as follows:

shaalaa.com
  Is there an error in this question or solution?
Chapter 2: Solutions - Exercises [Page 46]

APPEARS IN

Balbharati Chemistry [English] 12 Standard HSC
Chapter 2 Solutions
Exercises | Q 3.5 | Page 46

RELATED QUESTIONS

Which of the following is not a colligative property?


What happens when the external pressure applied becomes more than the osmotic pressure of solution?


At 300 K, 36 g of glucose present in a litre of its solution has an osmotic pressure of 4.98 bar. If the osmotic pressure of the solution is 1.52 bars at the same temperature, what would be its concentration?


Determine the amount of CaCl2 (i = 2.47) dissolved in 2.5 litre of water such that its osmotic pressure is 0.75 atm at 27°C.


Determine the osmotic pressure of a solution prepared by dissolving 25 mg of K2SO4 in 2 liter of water at 25°C, assuming that it is completely dissociated.


Define Semipermeable membrane


Calculate the mass of NaCl (molar mass = 58.5 g mol−1) to be dissolved in 37.2 g of water to lower the freezing point by 2°C, assuming that NaCl undergoes complete dissociation. (Kf for water = 1.86 K kg mol−1)


Calculate the mass of a compound (molar mass = 256 g mol−1) to be dissolved in 75 g of benzene to lower its freezing point by 0.48 K (Kf = 5.12 K kg mol−1).


Define the following term:
isotonic solution


Define the following term:
hypertonic solution


Define the following term:
hypotonic solution


Choose the most correct option.

In calculating osmotic pressure the concentration of solute is expressed in _______.


Choose the most correct option.

A living cell contains a solution which is isotonic with 0.3 M sugar solution. What osmotic pressure develops when the cell is placed in 0.1 M KCl solution at body temperature?


Choose the most correct option.

The osmotic pressure of blood is 7.65 atm at 310 K. An aqueous solution of glucose isotonic with blood has the percentage (by volume)________.


Answer the following in one or two sentences.

What is osmotic pressure?


Answer the following in one or two sentences.

A solution concentration is expressed in molarity and not in molality while considering osmotic pressure. Why?


Answer the following.

What are isotonic and hypertonic solutions?


Answer the following.

A solvent and its solution containing a nonvolatile solute are separated by a semipermeable membrane. Does the flow of solvent occur in both directions? Comment giving a reason.


Answer the following.

The osmotic pressure of CaCl2 and urea solutions of the same concentration at the same temperature are respectively 0.605 atm and 0.245 atm, calculate van’t Hoff factor for CaCl2.


Which of the following statements is applicable for 0.1 M urea solution and 0.1 M sucrose solution?


What are hypertonic solutions?


Explain the osmotic pressure of a solution with the help of a thistle tube.


Which of the following is a colligative property?


At constant temperature the osmotic pressure of a solution is ____________.


Osmotic pressure of a solution is 0.0821 atm at a temperature of 300 K. The concentration in moles/litre will be:


The temperature at which 10% aqueous solution of (W/V) of glucose will show the osmotic pressure of 16.4 atoms is: (R = 0.082 L atom K−1 mol1)


Which of the following statements is false?


Isotonic solutions must have the same:

(i) solute

(ii) density

(iii) elevation in boiling point

(iv) depression in freezing point


Give an example of a material used for making semipermeable membrane for carrying out reverse osmosis.


How can you remove the hard calcium carbonate layer of the egg without damaging its semiprermiable membrane? Can this egg be inserted into a bottle with a narrow neck without distorting its shape? Explain the process involved.


Isotonic solutions have same


The vapour pressure of water is 12.3 k pa at 300 k. Calculated the vapour pressure of molal solution in it.


Osmotic pressure of a solution containing 2 g dissolved protein per 300 cm3 of solution is 20 mm of Hg at 27°C. The molecular mass of protein is ______.


Derive an expression to calculate molar mass of non-volatile solute by osmotic pressure measurement.


Determine the osmotic pressure of a solution prepared by dissolving 2.32 × 10−2 g of K2SO4 in 2L of solution at 25°C assuming that K2SO4 is completely dissociated.

(R = 0.082 L atm K−1 mol, Molar mass K2SO4 = 174 g mol−1)


A solution containing 10 g glucose has osmotic pressure 3.84 atm. If 10 g more glucose is added to the same solution, what will be its osmotic pressure? (Temperature remains constant)


Define osmotic pressure (π).


Arrange the following solutions in the order of increasing osmotic pressure (π) assuming complete ionization.

  1. 0.5M Li2 SO4
  2. 0.5M KCl
  3. 0.5M Al2 (SO4)3 
  4. 0.1 M BaCl2

Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×