English

Answer the following. How molar mass of a solute is determined by osmotic pressure measurement? - Chemistry

Advertisements
Advertisements

Question

Answer the following.

How molar mass of a solute is determined by osmotic pressure measurement?

Short Note

Solution

1. For very dilute solutions, the osmotic pressure follows the equation,

`pi = ("n"_2 "RT")/"V"`        ....(1)

2. If the mass of solute in V litres of a solution is W2 and its molar mass is

`"M"_2`, then `"n"_2 = "W"_2/"M"_2`

Substituting the value of n2 in equation (1), we get

`pi = ("W"_2 "RT")/("M"_2 "V")`

∴ `"M"_2 = ("W"_2 "RT")/(pi "V")`

This formula can be used for the calculation of molar mass of a nonionic solute (i.e., nonelectrolyte), by osmotic pressure measurement.

shaalaa.com
  Is there an error in this question or solution?
Chapter 2: Solutions - Exercises [Page 46]

APPEARS IN

Balbharati Chemistry [English] 12 Standard HSC
Chapter 2 Solutions
Exercises | Q 3.6 | Page 46

RELATED QUESTIONS

Which of the following is not a colligative property?


What happens when the external pressure applied becomes more than the osmotic pressure of solution?


A solution containing 15 g urea (molar mass = 60 g mol–1) per litre of solution in water has the same osmotic pressure (isotonic) as a solution of glucose (molar mass = 180 g mol–1) in water. Calculate the mass of glucose present in one litre of its solution.


Calculate the osmotic pressure in pascals exerted by a solution prepared by dissolving 1.0 g of polymer of molar mass 185,000 in 450 mL of water at 37°C.


At 300 K, 36 g of glucose present in a litre of its solution has an osmotic pressure of 4.98 bar. If the osmotic pressure of the solution is 1.52 bars at the same temperature, what would be its concentration?


Determine the osmotic pressure of a solution prepared by dissolving 25 mg of K2SO4 in 2 liter of water at 25°C, assuming that it is completely dissociated.


Define osmotic pressure.


Which of the following 0.1 M will aqueous solutions exert highest osmotic pressure?

(a) `Al_2(SO_4)_3`

(b) `Na_2SO_4`

(c) `MgCl_2`

(d) KCl


Define Semipermeable membrane


Calculate the mass of NaCl (molar mass = 58.5 g mol−1) to be dissolved in 37.2 g of water to lower the freezing point by 2°C, assuming that NaCl undergoes complete dissociation. (Kf for water = 1.86 K kg mol−1)


Define the following term:
hypertonic solution


Define the following term:
hypotonic solution


Choose the most correct option.

A living cell contains a solution which is isotonic with 0.3 M sugar solution. What osmotic pressure develops when the cell is placed in 0.1 M KCl solution at body temperature?


Answer the following in one or two sentences.

What is osmotic pressure?


Answer the following in one or two sentences.

A solution concentration is expressed in molarity and not in molality while considering osmotic pressure. Why?


Answer the following.

What are isotonic and hypertonic solutions?


Answer the following.

A solvent and its solution containing a nonvolatile solute are separated by a semipermeable membrane. Does the flow of solvent occur in both directions? Comment giving a reason.


Answer the following.

The osmotic pressure of CaCl2 and urea solutions of the same concentration at the same temperature are respectively 0.605 atm and 0.245 atm, calculate van’t Hoff factor for CaCl2.


An aqueous solution of a certain organic compound has a density of 1.063 g mL-1 , osmotic pressure of 12.16 atm at 25 °C and a freezing point of 1.03 °C. What is the molar mass of the compound?


Which of the following statements is applicable for 0.1 M urea solution and 0.1 M sucrose solution?


What are hypertonic solutions?


Explain the osmotic pressure of a solution with the help of a thistle tube.


Explain the phenomenon of osmosis.


Which of the following is a colligative property?


Osmotic pressure of a solution is 0.0821 atm at a temperature of 300 K. The concentration in moles/litre will be:


A solution containing 10 g per dm3 of urea (molar mass 60 g mol−1) is isotonic with 5% solution of non-volatile solute, MB of solute is:


The temperature at which 10% aqueous solution of (W/V) of glucose will show the osmotic pressure of 16.4 atoms is: (R = 0.082 L atom K−1 mol1)


Which of the following statements is false?


Isotonic solutions must have the same:

(i) solute

(ii) density

(iii) elevation in boiling point

(iv) depression in freezing point


Give an example of a material used for making semipermeable membrane for carrying out reverse osmosis.


Match the items given in Column I and Column II.

Column I Column II
(i) Saturated solution (a) Solution having same osmotic
pressure at a given temperature as
that of given solution.
(ii) Binary solution (b) A solution whose osmotic
pressure is less than that of another.
(iii) Isotonic solution (c) Solution with two components.
(iv) Hypotonic solution (d) A solution which contains maximum
amount of solute that can be
dissolved in a given amount of
solvent at a given temperature.
(v) Solid solution (e) A solution whose osmotic pressure
is more than that of another.
(vi) Hypertonic solution (f) A solution in solid phase.

Discuss biological and industrial importance of osmosis.


How can you remove the hard calcium carbonate layer of the egg without damaging its semiprermiable membrane? Can this egg be inserted into a bottle with a narrow neck without distorting its shape? Explain the process involved.


Osmotic pressure of a solution increases if


Which of the following colligative property can provide molar mass of proteins (or polymers or colloids) with greatest precision?


Isotonic solutions have same


Which one of the following is a colligative property?


Blood cells retain their normal shape in solution which are


In Isotonic solution


Osmotic pressure of a solution containing 2 g dissolved protein per 300 cm3 of solution is 20 mm of Hg at 27°C. The molecular mass of protein is ______.


The following solutions were prepared by dissolving 10 g of glucose \[\ce{(C6H12O6)}\] in 250 ml of water (P1), 10 g of urea \[\ce{(CH4N2O)}\] in 250 ml of water (P2) and 10 g of sucrose \[\ce{(C12H22O11}\]) in 250 ml of water (P3). The right option for the decreasing order of osmotic pressure of these solutions is ______


Isotonic solutions are the solutions having the same ______.


A solution containing 10 g glucose has osmotic pressure 3.84 atm. If 10 g more glucose is added to the same solution, what will be its osmotic pressure? (Temperature remains constant)


Define osmotic pressure (π).


Prove that: M2 = `(W_2RT)/(πV)`.


Arrange the following solutions in the order of increasing osmotic pressure (π) assuming complete ionization.

  1. 0.5M Li2 SO4
  2. 0.5M KCl
  3. 0.5M Al2 (SO4)3 
  4. 0.1 M BaCl2

Define reverse osmosis.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×