English

Define osmotic pressure. - Chemistry

Advertisements
Advertisements

Question

Define osmotic pressure.

Definition

Solution

The excess of pressure on the side of the solution that stops the net flow of solvent into the solution through a semipermeable membrane is called osmotic pressure.

shaalaa.com
  Is there an error in this question or solution?
2016-2017 (July)

RELATED QUESTIONS

Determine the osmotic pressure of a solution prepared by dissolving 2.5 × 10−2 g of K2SO4 in 2L of water at 25°C, assuming that it is completely dissociated.

(R = 0.0821 L atm K−1 mol−1, Molar mass of K2SO4 = 174 g mol−1)


Which of the following is not a colligative property?


A solution containing 15 g urea (molar mass = 60 g mol–1) per litre of solution in water has the same osmotic pressure (isotonic) as a solution of glucose (molar mass = 180 g mol–1) in water. Calculate the mass of glucose present in one litre of its solution.


Calculate the osmotic pressure in pascals exerted by a solution prepared by dissolving 1.0 g of polymer of molar mass 185,000 in 450 mL of water at 37°C.


At 300 K, 36 g of glucose present in a litre of its solution has an osmotic pressure of 4.98 bar. If the osmotic pressure of the solution is 1.52 bars at the same temperature, what would be its concentration?


Determine the amount of CaCl2 (i = 2.47) dissolved in 2.5 litre of water such that its osmotic pressure is 0.75 atm at 27°C.


Determine the osmotic pressure of a solution prepared by dissolving 25 mg of K2SO4 in 2 liter of water at 25°C, assuming that it is completely dissociated.


Define Semipermeable membrane


Calculate the mass of NaCl (molar mass = 58.5 g mol−1) to be dissolved in 37.2 g of water to lower the freezing point by 2°C, assuming that NaCl undergoes complete dissociation. (Kf for water = 1.86 K kg mol−1)


Calculate the mass of a compound (molar mass = 256 g mol−1) to be dissolved in 75 g of benzene to lower its freezing point by 0.48 K (Kf = 5.12 K kg mol−1).


Define the following term:
hypotonic solution


Choose the most correct option.

A living cell contains a solution which is isotonic with 0.3 M sugar solution. What osmotic pressure develops when the cell is placed in 0.1 M KCl solution at body temperature?


Choose the most correct option.

The osmotic pressure of blood is 7.65 atm at 310 K. An aqueous solution of glucose isotonic with blood has the percentage (by volume)________.


Answer the following in one or two sentences.

What is osmotic pressure?


Answer the following in one or two sentences.

A solution concentration is expressed in molarity and not in molality while considering osmotic pressure. Why?


Answer the following.

The osmotic pressure of CaCl2 and urea solutions of the same concentration at the same temperature are respectively 0.605 atm and 0.245 atm, calculate van’t Hoff factor for CaCl2.


Answer the following.

How molar mass of a solute is determined by osmotic pressure measurement?


An aqueous solution of a certain organic compound has a density of 1.063 g mL-1 , osmotic pressure of 12.16 atm at 25 °C and a freezing point of 1.03 °C. What is the molar mass of the compound?


Which of the following statements is applicable for 0.1 M urea solution and 0.1 M sucrose solution?


What are hypertonic solutions?


Explain the osmotic pressure of a solution with the help of a thistle tube.


Explain the phenomenon of osmosis.


At constant temperature the osmotic pressure of a solution is ____________.


20 g of a substance were dissolved in 500 mL of water and the osmotic pressure of the solution was found to be 600 mm of mercury at 15°C. The molecular weight of the substance is:


The average osmotic pressure of human blood is 7.8 bar at 37°C. What is the concentration of an aqueous NaCl solution that could be used in the blood stream?


A solution containing 10 g per dm3 of urea (molar mass 60 g mol−1) is isotonic with 5% solution of non-volatile solute, MB of solute is:


The temperature at which 10% aqueous solution of (W/V) of glucose will show the osmotic pressure of 16.4 atoms is: (R = 0.082 L atom K−1 mol1)


At a given temperature, osmotic pressure of a concentrated solution of a substance ______.


Which of the following statements is false?


Isotonic solutions must have the same:

(i) solute

(ii) density

(iii) elevation in boiling point

(iv) depression in freezing point


Give an example of a material used for making semipermeable membrane for carrying out reverse osmosis.


How can you remove the hard calcium carbonate layer of the egg without damaging its semiprermiable membrane? Can this egg be inserted into a bottle with a narrow neck without distorting its shape? Explain the process involved.


Blood cells retain their normal shape in solution which are


The following solutions were prepared by dissolving 10 g of glucose \[\ce{(C6H12O6)}\] in 250 ml of water (P1), 10 g of urea \[\ce{(CH4N2O)}\] in 250 ml of water (P2) and 10 g of sucrose \[\ce{(C12H22O11}\]) in 250 ml of water (P3). The right option for the decreasing order of osmotic pressure of these solutions is ______


Derive an expression to calculate molar mass of non-volatile solute by osmotic pressure measurement.


Assertion (A) : Osmotic pressure is a colligative property.

Reason (R) : Osmotic pressure is proportional to the molality.


Determine the osmotic pressure of a solution prepared by dissolving 2.32 × 10−2 g of K2SO4 in 2L of solution at 25°C assuming that K2SO4 is completely dissociated.

(R = 0.082 L atm K−1 mol, Molar mass K2SO4 = 174 g mol−1)


Isotonic solutions are the solutions having the same ______.


Prove that: M2 = `(W_2RT)/(πV)`.


Arrange the following solutions in the order of increasing osmotic pressure (π) assuming complete ionization.

  1. 0.5M Li2 SO4
  2. 0.5M KCl
  3. 0.5M Al2 (SO4)3 
  4. 0.1 M BaCl2

Define reverse osmosis.


How will you determine molar mass of solute from osmotic pressure?


Write the condition of reverse osmosis.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×