Advertisements
Advertisements
Question
An aqueous solution of a certain organic compound has a density of 1.063 g mL-1 , osmotic pressure of 12.16 atm at 25 °C and a freezing point of 1.03 °C. What is the molar mass of the compound?
Solution
Given: Density of a solution = d = 1.063 g mL-1
Osmotic pressure of solution = π = 12.16 atm
Temperature = T = 25 °C = 298.15 K
Freezing point of solution = Tf = - 1.03 °C
To find: Molar mass of a compound
Formulae: 1. `triangle "T"_"f" = "K"_"f" "m"`
2. π = MRT
3. m = `(1000 "W"_2)/("M"_2 "W"_1)`
Calculation: R = 0.08205 dm3 atm K-1 mol-1
`triangle "T"_"f" = "T"_"f"^0 - "T"_"f"` = 0 °C - (- 1.03 °C) = 1.03 °C = 1.03 K
Kf of water = 1.86 K kg mol–1
Using formula (i),
`triangle "T"_"f" = "K"_"f" "m"`
m = `(triangle "T"_"f")/"K"_"f" = "1.03 K"/(1.86 "K kg mol"^-1)` = 0.554 mol kg-1 = 0.554 m
Using formula (ii),
π = MRT
M = `pi/"RT" = (12.16 "atm")/(0.08205 "dm"^3 "atm K"^-1 "mol"^-1 xx 298.15 "K")` = 0.497 mol dm-3 = 0.497 M
Mass of solvent = `(0. 497 "mol dm"^-3)/(0.554 "mol kg"^-1) xx 1 "dm"^3` = 0.897 kg = 897 g units
Mass of solution = 1.063 g mL-1 × 1000 mL = 1063 g
Mass of solute = 1063 g – 897 g = 166 g
Now, using formula (iii),
m = `(1000 "W"_2)/("M"_2 "W"_1)`
∴ `"M"_2 = (1000 "W"_2)/("m" "W"_1) = (1000 "g kg"^-1 xx 166 "g")/(0.554 "mol kg"^-1 xx 897 "g")`
= 334 g mol-1
The molar mass of the compound is 334 g mol-1.
APPEARS IN
RELATED QUESTIONS
Determine the osmotic pressure of a solution prepared by dissolving 2.5 × 10−2 g of K2SO4 in 2L of water at 25°C, assuming that it is completely dissociated.
(R = 0.0821 L atm K−1 mol−1, Molar mass of K2SO4 = 174 g mol−1)
Which of the following is not a colligative property?
What happens when the external pressure applied becomes more than the osmotic pressure of solution?
Blood cells are isotonic with 0.9% sodium chloride solution. What happens if we place blood cells in a solution containing
(i) 1.2% sodium chloride solution?
(ii) 0.4% sodium chloride solution?
A solution containing 15 g urea (molar mass = 60 g mol–1) per litre of solution in water has the same osmotic pressure (isotonic) as a solution of glucose (molar mass = 180 g mol–1) in water. Calculate the mass of glucose present in one litre of its solution.
Calculate the osmotic pressure in pascals exerted by a solution prepared by dissolving 1.0 g of polymer of molar mass 185,000 in 450 mL of water at 37°C.
Define osmotic pressure.
Which of the following 0.1 M will aqueous solutions exert highest osmotic pressure?
(a) `Al_2(SO_4)_3`
(b) `Na_2SO_4`
(c) `MgCl_2`
(d) KCl
Calculate the mass of NaCl (molar mass = 58.5 g mol−1) to be dissolved in 37.2 g of water to lower the freezing point by 2°C, assuming that NaCl undergoes complete dissociation. (Kf for water = 1.86 K kg mol−1)
Calculate the mass of a compound (molar mass = 256 g mol−1) to be dissolved in 75 g of benzene to lower its freezing point by 0.48 K (Kf = 5.12 K kg mol−1).
Define the following term:
isotonic solution
Define the following term:
hypertonic solution
Choose the most correct option.
A living cell contains a solution which is isotonic with 0.3 M sugar solution. What osmotic pressure develops when the cell is placed in 0.1 M KCl solution at body temperature?
Choose the most correct option.
The osmotic pressure of blood is 7.65 atm at 310 K. An aqueous solution of glucose isotonic with blood has the percentage (by volume)________.
Answer the following in one or two sentences.
What is osmotic pressure?
Answer the following in one or two sentences.
A solution concentration is expressed in molarity and not in molality while considering osmotic pressure. Why?
Answer the following.
What are isotonic and hypertonic solutions?
Answer the following.
A solvent and its solution containing a nonvolatile solute are separated by a semipermeable membrane. Does the flow of solvent occur in both directions? Comment giving a reason.
Answer the following.
Explain reverse osmosis.
Answer the following.
How molar mass of a solute is determined by osmotic pressure measurement?
What are hypertonic solutions?
Explain the osmotic pressure of a solution with the help of a thistle tube.
Explain the phenomenon of osmosis.
Explain the term osmosis.
Which of the following is a colligative property?
At constant temperature the osmotic pressure of a solution is ____________.
Osmotic pressure of a solution is 0.0821 atm at a temperature of 300 K. The concentration in moles/litre will be:
A solution containing 10 g per dm3 of urea (molar mass 60 g mol−1) is isotonic with 5% solution of non-volatile solute, MB of solute is:
The temperature at which 10% aqueous solution of (W/V) of glucose will show the osmotic pressure of 16.4 atoms is: (R = 0.082 L atom K−1 mol−1)
Which of the following statements is false?
Match the items given in Column I and Column II.
Column I | Column II |
(i) Saturated solution | (a) Solution having same osmotic pressure at a given temperature as that of given solution. |
(ii) Binary solution | (b) A solution whose osmotic pressure is less than that of another. |
(iii) Isotonic solution | (c) Solution with two components. |
(iv) Hypotonic solution | (d) A solution which contains maximum amount of solute that can be dissolved in a given amount of solvent at a given temperature. |
(v) Solid solution | (e) A solution whose osmotic pressure is more than that of another. |
(vi) Hypertonic solution | (f) A solution in solid phase. |
Discuss biological and industrial importance of osmosis.
Osmotic pressure of a solution increases if
Which of the following colligative property can provide molar mass of proteins (or polymers or colloids) with greatest precision?
In Isotonic solution
The vapour pressure of water is 12.3 k pa at 300 k. Calculated the vapour pressure of molal solution in it.
Osmotic pressure of a solution containing 2 g dissolved protein per 300 cm3 of solution is 20 mm of Hg at 27°C. The molecular mass of protein is ______.
The following solutions were prepared by dissolving 10 g of glucose \[\ce{(C6H12O6)}\] in 250 ml of water (P1), 10 g of urea \[\ce{(CH4N2O)}\] in 250 ml of water (P2) and 10 g of sucrose \[\ce{(C12H22O11}\]) in 250 ml of water (P3). The right option for the decreasing order of osmotic pressure of these solutions is ______
Derive an expression to calculate molar mass of non-volatile solute by osmotic pressure measurement.
Assertion (A) : Osmotic pressure is a colligative property.
Reason (R) : Osmotic pressure is proportional to the molality.
Isotonic solutions are the solutions having the same ______.
Prove that: M2 = `(W_2RT)/(πV)`.
Arrange the following solutions in the order of increasing osmotic pressure (π) assuming complete ionization.
- 0.5M Li2 SO4
- 0.5M KCl
- 0.5M Al2 (SO4)3
- 0.1 M BaCl2
Define reverse osmosis.
How will you determine molar mass of solute from osmotic pressure?