Advertisements
Advertisements
Question
Asha's mother read an article in the newspaper about a disaster that took place at Chernobyl. She could not understand much from the articles and asked a few questions from Asha regarding the article. Asha tried to answer her mother's questions based on what she learnt in Class XII Physics.
(a) What was the installation at Chernobyl where the disaster took place? What according to you, was the cause of this disaster?
(b) Explain the process of release of energy in the installation at Chernobyl.
(c) What according to you, were the values displayed by Asha and her mother?
Solution
(a) Nuclear power plant was installed at Chernobyl where the disaster took place. The Chernobyl accident was the result of a flawed reactor design that was operated with inadequately trained personnel.
(b) The process of release of energy in the installation at Chernobyl was nuclear fission.
Nuclear fission is the splitting of heavy nucleus into two or more lighter nuclei. In a typical nuclear reaction involving 235U and a neutron:
`""_92^235 U + n = ""_56^141Ba +""_36^92Kr + 3n + Q`
For a fission reaction, two conditions need to be satisfied:
(i) Critical mass of the substance (the minimum amount of mass is required for fission to be self-sustaining).
(ii) A relatively slow neutron is required to initiate the process.
(c) Qualities showed by Asha is:
- Knowledgeable
Qualities showed by Asha's mother is :
- Curious
RELATED QUESTIONS
In a typical nuclear reaction, e.g.
`"_1^2H+"_1^2H ->"_2^3He + n + 3.27 \text { MeV },`
although number of nucleons is conserved, yet energy is released. How? Explain.
Write the relationship between the size of a nucleus and its mass number (A)?
Using the curve for the binding energy per nucleon as a function of mass number A, state clearly how the release in energy in the processes of nuclear fission and nuclear fusion can be explained.
A heavy nucleus X of mass number 240 and binding energy per nucleon 7.6 MeV is split into two fragments Y and Z of mass numbers 110 and 130. The binding energy of nucleons in Y and Z is 8.5 MeV per nucleon. Calculate the energy Q released per fission in MeV.
As the mass number A increases, the binding energy per nucleon in a nucleus
In one average-life,
For nuclei with A > 100,
(a) the binding energy of the nucleus decreases on an average as A increases
(b) the binding energy per nucleon decreases on an average as A increases
(c) if the nucleus breaks into two roughly equal parts, energy is released
(d) if two nuclei fuse to form a bigger nucleus, energy is released.
Assume that the mass of a nucleus is approximately given by M = Amp where A is the mass number. Estimate the density of matter in kgm−3 inside a nucleus. What is the specific gravity of nuclear matter?
A neutron star has a density equal to that of the nuclear matter. Assuming the star to be spherical, find the radius of a neutron star whose mass is 4.0 × 1030 kg (twice the mass of the sun).
Calculate the mass of an α-particle. Its Its binding energy is 28.2 MeV.
(Use Mass of proton mp = 1.007276 u, Mass of `""_1^1"H"` atom = 1.007825 u, Mass of neutron mn = 1.008665 u, Mass of electron = 0.0005486 u ≈ 511 keV/c2,1 u = 931 MeV/c2.)