English

Beams of electrons and protons move parallel to each other in the same direction. They ______. - Physics

Advertisements
Advertisements

Question

Beams of electrons and protons move parallel to each other in the same direction. They ______.

Options

  • attract each other.

  • repel each other.

  • neither attract nor repel.

  • the force of attraction or repulsion depends upon the speed of the beams.

MCQ
Fill in the Blanks

Solution

Beams of electrons and protons move parallel to each other in the same direction. They repel each other.

Explanation:

The direction of the current is determined by the flow of the positive charge. As a result of the opposing currents here, they will resist one other.

shaalaa.com
  Is there an error in this question or solution?
2022-2023 (March) Outside Delhi Set 1

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

Using the concept of force between two infinitely long parallel current carrying conductors, define one ampere of current.


The figure shows three infinitely long straight parallel current carrying conductors. Find the
(i) magnitude and direction of the net magnetic field at point A lying on conductor 1,
(ii) magnetic force on conductor 2.


A charged particle goes undeflected in a region containing an electric and a magnetic field. It is possible that
(a) `vecE" || "vecB , vecv" || " vec E `
(b) `vecE  "is not parallel"  vecB`
(c) `vecv " || " vecB  but  vecv  "is not parallel"`
(d) `vecE" || " vecB  but   vecv "is not parallel"`


A long, straight wire carrying a current of 1.0 A is placed horizontally in a uniform magnetic field B = 1.0 × 10−5 T pointing vertically upward figure. Find the magnitude of the resultant magnetic field at the points P and Q, both situated at a distance of 2.0 cm from the wire in the same horizontal plane. 


A hypothetical magnetic field existing in a region is given by `vecB = B_0 vece` where `vece`_r denotes the unit vector along the radial direction. A circular loop of radius a, carrying a current i, is placed with its plane parallel to the xy plane and the centre at (0, 0, d). Find the magnitude of the magnetic force acting on the loop.



The magnetic field existing in a region is given by  `vecB = B_0(1 + x/1)veck` . A square loop of edge l and carrying a current i, is placed with its edges parallel to the xy axes. Find the magnitude of the net magnetic force experienced by the loop.


A long, straight wire carries a current i. Let B1 be the magnetic field at a point P at a distance d from the wire. Consider a section of length l of this wire such that the point P lies on a perpendicular bisector of the section B2 be the magnetic field at this point due to this second only. Find the value of d/l so that B2 differs from B1 by 1%.    


Three coplanar parallel wires, each carrying a current of 10 A along the same direction, are placed with a separation 5.0 cm between the consecutive ones. Find the magnitude of the magnetic force per unit length acting on the wires. 


Two parallel wires separated by a distance of 10 cm carry currents of 10 A and 40 A along the same direction. Where should a third current by placed so that it experiences no magnetic force?


Two long straight parallel current-carrying conductors are kept ‘a’ distant apart in the air. The direction of current in both the conductors is the same. Find the magnitude of force per unit length and the direction of the force between them. Hence define one ampere.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×