English
Karnataka Board PUCPUC Science Class 11

Can the Potential Energy in a Simple Harmonic Motion Be Negative? Will It Be So If We Choose Zero Potential Energy at Some Point Other than the Mean Position? - Physics

Advertisements
Advertisements

Question

Can the potential energy in a simple harmonic motion be negative? Will it be so if we choose zero potential energy at some point other than the mean position?

Short Note

Solution

No. It cannot be negative because the minimum potential energy of a particle executing simple harmonic motion at mean position is zero. The potential energy increases in positive direction at the extreme position.

However, if we choose zero potential energy at some other point, say extreme position, the potential energy can be negative at the mean position.

shaalaa.com
  Is there an error in this question or solution?
Chapter 12: Simple Harmonics Motion - Short Answers [Page 250]

APPEARS IN

HC Verma Concepts of Physics Vol. 1 [English] Class 11 and 12
Chapter 12 Simple Harmonics Motion
Short Answers | Q 9 | Page 250

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

Can simple harmonic motion take place in a non-inertial frame? If yes, should the ratio of the force applied with the displacement be constant?


In measuring time period of a pendulum, it is advised to measure the time between consecutive passage through the mean position in the same direction. This is said to result in better accuracy than measuring time between consecutive passage through an extreme position. Explain.


A platoon of soldiers marches on a road in steps according to the sound of a marching band. The band is stopped and the soldiers are ordered to break the steps while crossing a bridge. Why?


A student says that he had applied a force \[F = - k\sqrt{x}\] on a particle and the particle moved in simple harmonic motion. He refuses to tell whether k is a constant or not. Assume that he was worked only with positive x and no other force acted on the particle.


The time period of a particle in simple harmonic motion is equal to the smallest time between the particle acquiring a particular velocity \[\vec{v}\] . The value of v is


The displacement of a particle in simple harmonic motion in one time period is


The motion of a particle is given by x = A sin ωt + B cos ωt. The motion of the particle is


A wall clock uses a vertical spring-mass system to measure the time. Each time the mass reaches an extreme position, the clock advances by a second. The clock gives correct time at the equator. If the clock is taken to the poles it will


Select the correct statements.
(a) A simple harmonic motion is necessarily periodic.
(b) A simple harmonic motion is necessarily oscillatory.
(c) An oscillatory motion is necessarily periodic.
(d) A periodic motion is necessarily oscillatory.


Suppose a tunnel is dug along a diameter of the earth. A particle is dropped from a point, a distance h directly above the tunnel. The motion of the particle as seen from the earth is
(a) simple harmonic
(b) parabolic
(c) on a straight line
(d) periodic


An object is released from rest. The time it takes to fall through a distance h and the speed of the object as it falls through this distance are measured with a pendulum clock. The entire apparatus is taken on the moon and the experiment is repeated
(a) the measured times are same
(b) the measured speeds are same
(c) the actual times in the fall are equal
(d) the actual speeds are equal


A simple pendulum of length l is suspended through the ceiling of an elevator. Find the time period of small oscillations if the elevator (a) is going up with and acceleration a0(b) is going down with an acceleration a0 and (c) is moving with a uniform velocity.


A particle is subjected to two simple harmonic motions, one along the X-axis and the other on a line making an angle of 45° with the X-axis. The two motions are given by x = x0 sin ωt and s = s0 sin ωt. Find the amplitude of the resultant motion.


A simple pendulum has a time period T1. When its point of suspension is moved vertically upwards according to as y = kt2, where y is the vertical distance covered and k = 1 ms−2, its time period becomes T2. Then, T `"T"_1^2/"T"_2^2` is (g = 10 ms−2)


Motion of a ball bearing inside a smooth curved bowl, when released from a point slightly above the lower point is ______.

  1. simple harmonic motion.
  2. non-periodic motion.
  3. periodic motion.
  4. periodic but not S.H.M.

What is the ratio of maxmimum acceleration to the maximum velocity of a simple harmonic oscillator?


Which of the following expressions corresponds to simple harmonic motion along a straight line, where x is the displacement and a, b, and c are positive constants?


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×