English
Karnataka Board PUCPUC Science Class 11

P It is Proposed to Move a Particle in Simple Harmonic Motion on a Rough Horizontal Surface by Applying an External Force Along the Line of Motion. - Physics

Advertisements
Advertisements

Question

It is proposed to move a particle in simple harmonic motion on a rough horizontal surface by applying an external force along the line of motion. Sketch the graph of the applied force against the position of the particle. Note that the applied force has two values for a given position depending on whether the particle is moving in positive or negative direction.

Short Note

Solution

Figure (a) shows the graph of the applied force against the position of the particle.

shaalaa.com
  Is there an error in this question or solution?
Chapter 12: Simple Harmonics Motion - Short Answers [Page 250]

APPEARS IN

HC Verma Concepts of Physics Vol. 1 [English] Class 11 and 12
Chapter 12 Simple Harmonics Motion
Short Answers | Q 8 | Page 250

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

The energy of system in simple harmonic motion is given by \[E = \frac{1}{2}m \omega^2 A^2 .\] Which of the following two statements is more appropriate?
(A) The energy is increased because the amplitude is increased.
(B) The amplitude is increased because the energy is increased.


Can a pendulum clock be used in an earth-satellite?


A block of known mass is suspended from a fixed support through a light spring. Can you find the time period of vertical oscillation only by measuring the extension of the spring when the block is in equilibrium?


The time period of a particle in simple harmonic motion is equal to the time between consecutive appearances of the particle at a particular point in its motion. This point is


The time period of a particle in simple harmonic motion is equal to the smallest time between the particle acquiring a particular velocity \[\vec{v}\] . The value of v is


The distance moved by a particle in simple harmonic motion in one time period is


The motion of a particle is given by x = A sin ωt + B cos ωt. The motion of the particle is


A wall clock uses a vertical spring-mass system to measure the time. Each time the mass reaches an extreme position, the clock advances by a second. The clock gives correct time at the equator. If the clock is taken to the poles it will


Select the correct statements.
(a) A simple harmonic motion is necessarily periodic.
(b) A simple harmonic motion is necessarily oscillatory.
(c) An oscillatory motion is necessarily periodic.
(d) A periodic motion is necessarily oscillatory.


A particle moves in a circular path with a continuously increasing speed. Its motion is


For a particle executing simple harmonic motion, the acceleration is proportional to


A particle moves on the X-axis according to the equation x = x0 sin2 ωt. The motion is simple harmonic


The angle made by the string of a simple pendulum with the vertical depends on time as \[\theta = \frac{\pi}{90}  \sin  \left[ \left( \pi  s^{- 1} \right)t \right]\] .Find the length of the pendulum if g = π2 m2.


A simple pendulum is constructed by hanging a heavy ball by a 5.0 m long string. It undergoes small oscillations. (a) How many oscillations does it make per second? (b) What will be the frequency if the system is taken on the moon where acceleration due to gravitation of the moon is 1.67 m/s2?


Write short notes on two springs connected in series.


Write short notes on two springs connected in parallel.


Consider the Earth as a homogeneous sphere of radius R and a straight hole is bored in it through its centre. Show that a particle dropped into the hole will execute a simple harmonic motion such that its time period is

T = `2π sqrt("R"/"g")`


A body having specific charge 8 µC/g is resting on a frictionless plane at a distance 10 cm from the wall (as shown in the figure). It starts moving towards the wall when a uniform electric field of 100 V/m is applied horizontally toward the wall. If the collision of the body with the wall is perfectly elastic, then the time period of the motion will be ______ s.


A weightless rigid rod with a small iron bob at the end is hinged at point A to the wall so that it can rotate in all directions. The rod is kept in the horizontal position by a vertical inextensible string of length 20 cm, fixed at its midpoint. The bob is displaced slightly, perpendicular to the plane of the rod and string. The period of small oscillations of the system in the form `(pix)/10` is ______ sec. and the value of x is ______.

(g = 10 m/s2)

 


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×