Advertisements
Advertisements
Question
Choose the correct alternative:
The radius of the circle passing through the points (6, 2) two of whose diameter are x + y = 6 and x + 2y = 4 is
Options
10
`2sqrt(5)`
6
4
Solution
`2sqrt(5)`
APPEARS IN
RELATED QUESTIONS
Find the centre and radius of the circle
x2 + y2 = 16
Find the equation of the circle whose centre is (-3, -2) and having circumference 16π.
Find the Cartesian equation of the circle whose parametric equations are x = 3 cos θ, y = 3 sin θ, 0 ≤ θ ≤ 2π.
Determine whether the points P(1, 0), Q(2, 1) and R(2, 3) lie outside the circle, on the circle or inside the circle x2 + y2 – 4x – 6y + 9 = 0.
Find the value of P if the line 3x + 4y – P = 0 is a tangent to the circle x2 + y2 = 16.
If the centre of the circle is (-a, -b) and radius is `sqrt("a"^2 - "b"^2)` then the equation of circle is:
If the circle touches the x-axis, y-axis, and the line x = 6 then the length of the diameter of the circle is:
Find the equation of the circle with centre (2, −1) and passing through the point (3, 6) in standard form
A circle of area 9π square units has two of its diameters along the lines x + y = 5 and x – y = 1. Find the equation of the circle
If y = `2sqrt(2)x + "c"` is a tangent to the circle x2 + y2 = 16, find the value of c
Find the equation of the tangent and normal to the circle x2 + y2 – 6x + 6y – 8 = 0 at (2, 2)
Find centre and radius of the following circles
x2 + (y + 2)2 = 0
Find centre and radius of the following circles
x2 + y2 + 6x – 4y + 4 = 0
Find centre and radius of the following circles
2x2 + 2y2 – 6x + 4y + 2 = 0
If the equation 3x2 + (3 – p)xy + qy2 – 2px = 8pq represents a circle, find p and q. Also determine the centre and radius of the circle
Choose the correct alternative:
The length of the diameter of the circle which touches the x -axis at the point (1, 0) and passes through the point (2, 3)
Choose the correct alternative:
The radius of the circle 3x2 + by2 + 4bx – 6by + b2 = 0 is
Choose the correct alternative:
The centre of the circle inscribed in a square formed by the lines `x^2 - 8x - 12` = 0 and `y^2 - 14y + 45` = 0 is
Choose the correct alternative:
The equation of the normal to the circle x2 + y2 – 2x – 2y + 1 = 0 which is parallel to the line 2x + 4y = 3 is
Choose the correct alternative:
The circle passing through (1, – 2) and touching the axis of x at (3, 0) passing through the point