Advertisements
Advertisements
Question
Choose the correct alternative:
The centre of the circle inscribed in a square formed by the lines `x^2 - 8x - 12` = 0 and `y^2 - 14y + 45` = 0 is
Options
(4, 7)
(7, 4)
(9, 4)
(4, 9)
Solution
(4, 7)
APPEARS IN
RELATED QUESTIONS
Find the centre and radius of the circle.
5x2 + 5y2+ 4x – 8y – 16 = 0
Find the equation of the circle whose centre is (-3, -2) and having circumference 16π.
Find the equation of the circle on the line joining the points (1, 0), (0, 1), and having its centre on the line x + y = 1.
If the lines x + y = 6 and x + 2y = 4 are diameters of the circle, and the circle passes through the point (2, 6) then find its equation.
(1, -2) is the centre of the circle x2 + y2 + ax + by – 4 = 0, then its radius:
The equation of the circle with centre on the x axis and passing through the origin is:
In the equation of the circle x2 + y2 = 16 then v intercept is (are):
If the perimeter of the circle is 8π units and centre is (2, 2) then the equation of the circle is:
If the circle touches the x-axis, y-axis, and the line x = 6 then the length of the diameter of the circle is:
Find the equation of the circles with centre (2, 3) and passing through the intersection of the lines 3x – 2y – 1 = 0 and 4x + y – 27 = 0
Find the equation of the tangent and normal to the circle x2 + y2 – 6x + 6y – 8 = 0 at (2, 2)
Find centre and radius of the following circles
x2 + (y + 2)2 = 0
Find centre and radius of the following circles
x2 + y2 – x + 2y – 3 = 0
Choose the correct alternative:
The equation of the circle passing through (1, 5) and (4, 1) and touching y-axis `x^2 + y^2 - 5x - 6y + 9 + lambda(4x + 3y - 19)` = where `lambda` is equal to
Choose the correct alternative:
The radius of the circle 3x2 + by2 + 4bx – 6by + b2 = 0 is
Choose the correct alternative:
The radius of the circle passing through the points (6, 2) two of whose diameter are x + y = 6 and x + 2y = 4 is