English

Define the Terms "Stopping Potential' and 'Threshold Frequency' in Relation to Photoelectric Effect. How Does One Determine These Physical Quantities Using Einstein'S Equation? - Physics

Advertisements
Advertisements

Question

Define the terms "stopping potential' and 'threshold frequency' in relation to the photoelectric effect. How does one determine these physical quantities using Einstein's equation?

Answer in Brief

Solution

Stopping potential:
For a particular frequency of incident radiation, the minimum negative (retarding) potential V0 given to the anode plate for which the photocurrent stops or becomes zero is called the cut-off or stopping potential.

Threshold frequency: 
There exists a certain minimum cut-off frequency ν0, for which the stopping potential is zero and below ν0 the electron emission is not possible.

This cut-off frequency is known as threshold frequency ν0, which is different for different metal. In the photoelectric effect, an electron absorbs a quantum of energy (hν ) of radiation. If this quantum of energy absorbed by electron exceeds the minimum energy required to come out of the metal surface by electron, the kinetic energy of the emitted electron is

`"K" = "hv" - phi`  ...(1)

Where `phi` is the minimum energy for electron to come out of the metal, and is different for different electrons in the metal. The maximum kinetic energy of photoelectrons is given by 

`"K""max" = "hv" - phi0`   ...(2)

Where, `phi0 - ` work function or least value of φ equation (2) is known as Einstein's photoelectric equation. 

Explanation of photoelectric effect with the help of Einstein's photoelectric equation

(i) According to equation (2), Kmax depends linearly on ν, and is independent of the intensity of radiation. This happens because, here, the photoelectric effect arises from the absorption of a single quantum of radiation by a single electron. The intensity of the radiation (that is proportional to the number of energy quanta per unit area per unit time) is irrelevant to this basic process.

(ii) Since Kmax must be non-negative, equation (2) implies that photoelectric emission is possible only if h ν > `phi0`.

or v > v0, where v0 = `"V"_0 = phi_0/"h"`

Thus, there exists a threshold frequency v0 `"V"_0 = phi_0/"h"` exists, below which photoelectric emission is not possible, and is independent of intensity.

(iii) As the intensity of radiation is proportional to the number of energy quanta per unit area per unit time. The greater the number of energy quanta available, the greater is the number of electrons absorbing the energy quanta, and therefore, the number of electrons coming out of the metal (for ν > ν0) is more and so is photoelectric current.

shaalaa.com
Experimental Study of Photoelectric Effect
  Is there an error in this question or solution?
2014-2015 (March) Ajmer Set 2

RELATED QUESTIONS

Light of intensity 10−5 W m−2 falls on a sodium photo-cell of surface area 2 cm2. Assuming that the top 5 layers of sodium absorb the incident energy, estimate time required for photoelectric emission in the wave-picture of radiation. The work function for the metal is given to be about 2 eV. What is the implication of your answer?


Can a photon be deflected by an electric field? Or by a magnetic field?


The equation E = pc is valid


Calculate the momentum of a photon of light of wavelength 500 nm.

(Use h = 6.63 × 10-34J-s = 4.14 × 10-15 eV-s, c = 3 × 108 m/s and me = 9.1 × 10-31kg)


A sphere of radius 1.00 cm is placed in the path of a parallel beam of light of large aperture. The intensity of the light is 0.5 W cm−2. If the sphere completely absorbs the radiation falling on it, Show that the force on the sphere due to the light falling on it is the same even if the sphere is not perfectly absorbing.


The work function of a metal is 2.5 × 10−19 J. (a) Find the threshold frequency for photoelectric emission. (b) If the metal is exposed to a light beam of frequency 6.0 × 1014 Hz, what will be the stopping potential?

(Use h = 6.63 × 10-34J-s = 4.14 × 10-15 eV-s, c = 3 × 108 m/s and me = 9.1 × 10-31kg)


Find the maximum magnitude of the linear momentum of a photoelectron emitted when a wavelength of 400 nm falls on a metal with work function 2.5 eV.

(Use h = 6.63 × 10-34J-s = 4.14 × 10-15 eV-s, c = 3 × 108 m/s and me = 9.1 × 10-31kg)


Answer the following question.
Plot a graph of photocurrent versus anode potential for radiation of frequency ν and intensities I1 and I2 (I1 < I2).


If photons of ultraviolet light of energy 12 eV are incident on a metal surface of work function of 4 eV, then the stopping potential (in eV) will be :


What is the effect of threshold frequency and stopping potential on increasing the frequency of the incident beam of light? Justify your answer.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×