English
Karnataka Board PUCPUC Science 2nd PUC Class 12

Light of intensity 10−5 W m−2 falls on a sodium photo-cell of surface area 2 cm2. Assuming that the top 5 layers of sodium absorb the incident energy, estimate time required for - Physics

Advertisements
Advertisements

Question

Light of intensity 10−5 W m−2 falls on a sodium photo-cell of surface area 2 cm2. Assuming that the top 5 layers of sodium absorb the incident energy, estimate time required for photoelectric emission in the wave-picture of radiation. The work function for the metal is given to be about 2 eV. What is the implication of your answer?

Numerical

Solution

Intensity of incident light, I = 10−5 W m−2

Surface area of a sodium photocell, A = 2 cm2 = 2 × 10−4 m2

Incident power of the light, P = I × A

= 10−5 × 2 × 10−4

= 2 × 10−9 W

Work function of the metal, `phi_0` = 2 eV

= 2 × 1.6 × 10−19

= 3.2 × 10−19 J

Number of layers of sodium that absorbs the incident energy, n = 5

We know that the effective atomic area of a sodium atom, Ae is 10−20 m2.

Hence, the number of conduction electrons in n layers is given as:

`"n'" = "n" xx "A"/"A"_"e"`

= `5 xx (2xx10^(-4))/10^(-20)`

= 1017

The incident power is uniformly absorbed by all the electrons continuously. Hence, the amount of energy absorbed per second per electron is:

`"E" = "P"/"n'"`

= `(2xx10^(-9))/10^17`

= 2 × 10−26 J/s

Time required for photoelectric emission:

`"t" = phi_0/"E"`

= `(3.2 xx 10^(-19))/(2xx10^(-26))`

= 1.6 × 107 s ≈ 0.507 years

The time required for the photoelectric emission is nearly half a year, which is not practical. Hence, the wave picture is in disagreement with the given experiment.

shaalaa.com
Experimental Study of Photoelectric Effect
  Is there an error in this question or solution?
Chapter 11: Dual Nature of Radiation and Matter - Exercise [Page 410]

APPEARS IN

NCERT Physics [English] Class 12
Chapter 11 Dual Nature of Radiation and Matter
Exercise | Q 11.30 | Page 410
NCERT Physics [English] Class 12
Chapter 11 Dual Nature of Radiation and Matter
Exercise | Q 30 | Page 410

RELATED QUESTIONS

The photoelectric cut-off voltage in a certain experiment is 1.5 V. What is the maximum kinetic energy of photoelectrons emitted?


Monochromatic radiation of wavelength 640.2 nm (1 nm = 10−9 m) from a neon lamp irradiates photosensitive material made of caesium on tungsten. The stopping voltage is measured to be 0.54 V. The source is replaced by an iron source and its 427.2 nm line irradiates the same photo-cell. Predict the new stopping voltage.


The following graph shows the variation of photocurrent for a photosensitive metal : 


(a) Identify the variable X on the horizontal axis.

(b) What does the point A on the horizontal axis represent?

(c) Draw this graph for three different values of frequencies of incident radiation v1, v2 and v3 (v1 > v2 > v3) for same intensity.

(d) Draw this graph for three different values of intensities of incident radiation I1, I2 and I3 (I1 > I2 > I3) having same frequency.


Can we find the mass of a photon by the definition p = mv?


Is it always true that for two sources of equal intensity, the number of photons emitted in a given time are equal?


Let nr and nb be the number of photons emitted by a red bulb and a blue bulb, respectively, of equal power in a given time.


When stopping potential is applied in an experiment on photoelectric effect, no photoelectric is observed. This means that


The collector plate in an experiment on photoelectric effect is kept vertically above the emitter plate. A light source is put on and a saturation photocurrent is recorded. An electric field is switched on that has a vertically downward direction.


Calculate the momentum of a photon of light of wavelength 500 nm.

(Use h = 6.63 × 10-34J-s = 4.14 × 10-15 eV-s, c = 3 × 108 m/s and me = 9.1 × 10-31kg)


An atom absorbs a photon of wavelength 500 nm and emits another photon of wavelength 700 nm. Find the net energy absorbed by the atom in the process.

(Use h = 6.63 × 10-34J-s = 4.14 × 10-15 eV-s, c = 3 × 108 m/s and me = 9.1 × 10-31kg)


When the sun is directly overhead, the surface of the earth receives 1.4 × 103 W m−2 of sunlight. Assume that the light is monochromatic with average wavelength 500 nm and that no light is absorbed in between the sun and the earth's surface. The distance between the sun and the earth is 1.5 × 1011 m. (a) Calculate the number of photons falling per second on each square metre of earth's surface directly below the sun. (b) How many photons are there in each cubic metre near the earth's surface at any instant? (c) How many photons does the sun emit per second?

(Use h = 6.63 × 10-34J-s = 4.14 × 10-15 eV-s, c = 3 × 108 m/s and me = 9.1 × 10-31kg)


A 100 W light bulb is placed at the centre of a spherical chamber of radius 20 cm. Assume that 60% of the energy supplied to the bulb is converted into light and that the surface of the chamber is perfectly absorbing. Find the pressure exerted by the light on the surface of the chamber.

(Use h = 6.63 × 10-34J-s = 4.14 × 10-15 eV-s, c = 3 × 108 m/s and me = 9.1 × 10-31kg)


Show that it is not possible for a photon to be completely absorbed by a free electron.


The figure is the plot of stopping potential versus the frequency of the light used in an experiment on photoelectric effect. Find (a) the ratio h/e and (b) the work function.


Explain how does (i) photoelectric current and (ii) kinetic energy of the photoelectrons emitted in a photocell vary if the frequency of incident radiation is doubled, but keeping the intensity same?

Show the graphical variation in the above two cases.


In photoelectric effect, the photoelectric current started to flow. This means that the frequency of incident radiations is ______.


The graph shows the variation of photocurrent for a photosensitive metal

  1. What does X and A on the horizontal axis represent?
  2. Draw this graph for three different values of frequencies of incident radiation ʋ1, ʋ2 and ʋ33 > ʋ2 > ʋ1) for the same intensity.
  3. Draw this graph for three different values of intensities of incident radiation I1, I2 and I3 (I3 > I2 > I1) having the same frequency.

How would the stopping potential for a given photosensitive surface change if the intensity of incident radiation was decreased? Justify your answer.


A metallic plate exposed to white light emits electrons. For which of the following colours of light, the stopping potential will be maximum?


What is the effect of threshold frequency and stopping potential on increasing the frequency of the incident beam of light? Justify your answer.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×