English
Karnataka Board PUCPUC Science Class 11

Let Nr and Nb Be the Number of Photons Emitted by a Red Bulb and a Blue Bulb, Respectively, of Equal Power in a Given Time. - Physics

Advertisements
Advertisements

Question

Let nr and nb be the number of photons emitted by a red bulb and a blue bulb, respectively, of equal power in a given time.

Options

  • nr = nb

  • nr < nb

  • nr > nb

  • The information is insufficient to derive a relation between nr and nb.

MCQ

Solution

nr > nb

The two bulbs are of equal power. It means that they consume equal amount of energy per unit time.
Now, as the frequency of blue light `(f_b)` is higher than the frequency of red light `(f_r)` , `hf_b > hf_r`

Hence, the energy of a photon of blue light is more than the energy of a photon of red light.
Thus, a photon of blue light requires more energy than a photon of red light to be emitted.
For the same energy given to the bulbs in a certain time, the number of photons of blue light will be less than that of red light.

∴ `n_r > n_b` (As the amount of energy emitted from the two bulb is same)

shaalaa.com
Experimental Study of Photoelectric Effect
  Is there an error in this question or solution?
Chapter 20: Photoelectric Effect and Wave-Particle Duality - MCQ [Page 363]

APPEARS IN

HC Verma Concepts of Physics Vol. 2 [English] Class 11 and 12
Chapter 20 Photoelectric Effect and Wave-Particle Duality
MCQ | Q 4 | Page 363

RELATED QUESTIONS

Define the term 'intensity of radiation' in terms of photon picture of light.


(a) Estimate the speed with which electrons emitted from a heated emitter of an evacuated tube impinge on the collector maintained at a potential difference of 500 V with respect to the emitter. Ignore the small initial speeds of the electrons. The specific charge of the electron, i.e., its e/m is given to be 1.76 × 1011 C kg−1.

(b) Use the same formula you employ in (a) to obtain electron speed for an collector potential of 10 MV. Do you see what is wrong? In what way is the formula to be modified?


The following graph shows the variation of photocurrent for a photosensitive metal : 


(a) Identify the variable X on the horizontal axis.

(b) What does the point A on the horizontal axis represent?

(c) Draw this graph for three different values of frequencies of incident radiation v1, v2 and v3 (v1 > v2 > v3) for same intensity.

(d) Draw this graph for three different values of intensities of incident radiation I1, I2 and I3 (I1 > I2 > I3) having same frequency.


A hot body is placed in a closed room maintained at a lower temperature. Is the number of photons in the room increasing?


Should the energy of a photon be called its kinetic energy or its internal energy?


Two photons of 


The collector plate in an experiment on photoelectric effect is kept vertically above the emitter plate. A light source is put on and a saturation photocurrent is recorded. An electric field is switched on that has a vertically downward direction.


In which of the following situations, the heavier of the two particles has smaller de Broglie wavelength? The two particles
(a) move with the same speed
(b) move with the same linear momentum
(c) move with the same kinetic energy
(d) have fallen through the same height


A sphere of radius 1.00 cm is placed in the path of a parallel beam of light of large aperture. The intensity of the light is 0.5 W cm−2. If the sphere completely absorbs the radiation falling on it, find the force exerted by the light beam on the sphere.

(Use h = 6.63 × 10-34J-s = 4.14 × 10-15 eV-s, c = 3 × 108 m/s and me = 9.1 × 10-31kg)


Find the maximum magnitude of the linear momentum of a photoelectron emitted when a wavelength of 400 nm falls on a metal with work function 2.5 eV.

(Use h = 6.63 × 10-34J-s = 4.14 × 10-15 eV-s, c = 3 × 108 m/s and me = 9.1 × 10-31kg)


A small piece of cesium metal (φ = 1.9 eV) is kept at a distance of 20 cm from a large metal plate with a charge density of 1.0 × 10−9 C m−2 on the surface facing the cesium piece. A monochromatic light of wavelength 400 nm is incident on the cesium piece. Find the minimum and maximum kinetic energy of the photoelectrons reaching the large metal plate. Neglect any change in electric field due to the small piece of cesium present.

(Use h = 6.63 × 10-34J-s = 4.14 × 10-15 eV-s, c = 3 × 108 m/s and me = 9.1 × 10-31kg)


The figure is the plot of stopping potential versus the frequency of the light used in an experiment on photoelectric effect. Find (a) the ratio h/e and (b) the work function.


In the case of photoelectric effect experiment, explain the following facts, giving reasons.
The photoelectric current increases with increase of intensity of incident light.


Two monochromatic beams A and B of equal intensity I, hit a screen. The number of photons hitting the screen by beam A is twice that by beam B. Then what inference can you make about their frequencies?


Consider a 20 W bulb emitting light of wavelength 5000 Å and shining on a metal surface kept at a distance 2 m. Assume that the metal surface has work function of 2 eV and that each atom on the metal surface can be treated as a circular disk of radius 1.5 Å.

  1. Estimate no. of photons emitted by the bulb per second. [Assume no other losses]
  2. Will there be photoelectric emission?
  3. How much time would be required by the atomic disk to receive energy equal to work function (2 eV)?
  4. How many photons would atomic disk receive within time duration calculated in (iii) above?
  5. Can you explain how photoelectric effect was observed instantaneously?

If photons of ultraviolet light of energy 12 eV are incident on a metal surface of work function of 4 eV, then the stopping potential (in eV) will be :


How would the stopping potential for a given photosensitive surface change if the intensity of incident radiation was decreased? Justify your answer.


A metallic plate exposed to white light emits electrons. For which of the following colours of light, the stopping potential will be maximum?


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×