English
Karnataka Board PUCPUC Science Class 11

An Atom Absorbs a Photon of Wavelength 500 Nm and Emits Another Photon of Wavelength 700 Nm. Find the Net Energy Absorbed by the Atom in the Process. - Physics

Advertisements
Advertisements

Question

An atom absorbs a photon of wavelength 500 nm and emits another photon of wavelength 700 nm. Find the net energy absorbed by the atom in the process.

(Use h = 6.63 × 10-34J-s = 4.14 × 10-15 eV-s, c = 3 × 108 m/s and me = 9.1 × 10-31kg)

Sum

Solution

Given :-

Wavelength of absorbed photon, `λ_1` = 500 nm

Wavelength of emitted photon, `λ_2` = 700 nm

Speed of light, `c = 3 xx 10^8  "m/s"`

Planck's constant, h = `6.63 xx 10^-34  "Js"`

Energy of absorbed photon,

`E_1 = (hc)/λ_1 = (h xx 3 xx 10^8)/(500 xx 10^-9)`

Energy of emitted photon,

`E_2 = (hc)/λ_2 = (h xx 3 xx 10^8)/(700 xx 10^-9)`

Energy absorbed by the atom in the process :-

`E_1 - E_2 = hc[1/λ_1 - 1/λ_2]`

`= 6.63 xx 3[1/5 - 1/7] xx 10^-19`

`= 6.63 xx 3 xx 2/35 xx 10^-19`

`= 1.136 xx 10^-19  "J"`

shaalaa.com
Experimental Study of Photoelectric Effect
  Is there an error in this question or solution?
Chapter 20: Photoelectric Effect and Wave-Particle Duality - Exercises [Page 365]

APPEARS IN

HC Verma Concepts of Physics Vol. 2 [English] Class 11 and 12
Chapter 20 Photoelectric Effect and Wave-Particle Duality
Exercises | Q 3 | Page 365

RELATED QUESTIONS

The photoelectric cut-off voltage in a certain experiment is 1.5 V. What is the maximum kinetic energy of photoelectrons emitted?


Use the same formula you employ in (a) to obtain electron speed for an collector potential of 10 MV. Do you see what is wrong? In what way is the formula to be modified?


Light of intensity 10−5 W m−2 falls on a sodium photo-cell of surface area 2 cm2. Assuming that the top 5 layers of sodium absorb the incident energy, estimate time required for photoelectric emission in the wave-picture of radiation. The work function for the metal is given to be about 2 eV. What is the implication of your answer?


Every metal has a definite work function. Why do all photoelectrons not come out with the same energy if incident radiation is monochromatic? Why is there an energy distribution of photoelectrons?


Draw graphs showing variation of photoelectric current with applied voltage for two incident radiations of equal frequency and different intensities. Mark the graph for the radiation of higher intensity.


Is it always true that for two sources of equal intensity, the number of photons emitted in a given time are equal?


The threshold wavelength of a metal is λ0. Light of wavelength slightly less than λ0 is incident on an insulated plate made of this metal. It is found that photoelectrons are emitted for some time and after that the emission stops. Explain.


Let nr and nb be the number of photons emitted by a red bulb and a blue bulb, respectively, of equal power in a given time.


The equation E = pc is valid


A photon of energy hv is absorbed by a free electron of a metal with work-function hv − φ.


When the sun is directly overhead, the surface of the earth receives 1.4 × 103 W m−2 of sunlight. Assume that the light is monochromatic with average wavelength 500 nm and that no light is absorbed in between the sun and the earth's surface. The distance between the sun and the earth is 1.5 × 1011 m. (a) Calculate the number of photons falling per second on each square metre of earth's surface directly below the sun. (b) How many photons are there in each cubic metre near the earth's surface at any instant? (c) How many photons does the sun emit per second?

(Use h = 6.63 × 10-34J-s = 4.14 × 10-15 eV-s, c = 3 × 108 m/s and me = 9.1 × 10-31kg)


A beam of white light is incident normally on a plane surface absorbing 70% of the light and reflecting the rest. If the incident beam carries 10 W of power, find the force exerted by it on the surface.

(Use h = 6.63 × 10-34J-s = 4.14 × 10-15 eV-s, c = 3 × 108 m/s and me = 9.1 × 10-31kg)


The work function of a metal is 2.5 × 10−19 J. (a) Find the threshold frequency for photoelectric emission. (b) If the metal is exposed to a light beam of frequency 6.0 × 1014 Hz, what will be the stopping potential?

(Use h = 6.63 × 10-34J-s = 4.14 × 10-15 eV-s, c = 3 × 108 m/s and me = 9.1 × 10-31kg)


The figure is the plot of stopping potential versus the frequency of the light used in an experiment on photoelectric effect. Find (a) the ratio h/e and (b) the work function.


On the basis of the graphs shown in the figure, answer the following questions :

(a) Which physical parameter is kept constant for the three curves?

(b) Which is the highest frequency among v1, v2, and v3?


In photoelectric effect, the photoelectric current started to flow. This means that the frequency of incident radiations is ______.


Consider a metal exposed to light of wavelength 600 nm. The maximum energy of the electron doubles when light of wavelength 400 nm is used. Find the work function in eV.


Consider a 20 W bulb emitting light of wavelength 5000 Å and shining on a metal surface kept at a distance 2 m. Assume that the metal surface has work function of 2 eV and that each atom on the metal surface can be treated as a circular disk of radius 1.5 Å.

  1. Estimate no. of photons emitted by the bulb per second. [Assume no other losses]
  2. Will there be photoelectric emission?
  3. How much time would be required by the atomic disk to receive energy equal to work function (2 eV)?
  4. How many photons would atomic disk receive within time duration calculated in (iii) above?
  5. Can you explain how photoelectric effect was observed instantaneously?

How would the stopping potential for a given photosensitive surface change if the frequency of the incident radiation were increased? Justify your answer.


The figure shows a plot of stopping potential (V0) versus `1/lambda`, where λ is the wavelength of the radiation causing photoelectric emission from a surface. The slope of the line is equal to ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×