Advertisements
Advertisements
Question
Determine the nature of root of the quadratic equation.
m2 - 2m + 1 = 0
Solution
Given:
⇒ m2 - 2m + 1 = 0 compare with ax2 + bx + c = 0
We get,
⇒ a = 1, b = - 2, c = 1
The value of the discriminant is
∴ b2 - 4ac
= (-2)2 - 4(1) (1)
= 4 - 4
= 0
∴ b2 - 4ac = 0. Hence, roots are real and equal.
APPEARS IN
RELATED QUESTIONS
Compare the given quadratic equation to the general form and write values of a, b, c.
x2 – 7x + 5 = 0
Compare the given quadratic equation to the general form and write values of a,b, c.
y2 = 7y
Solve using formula.
x2 – 3x – 2 = 0
With the help of the flow chart given below solve the equation \[x^2 + 2\sqrt{3}x + 3 = 0\] using the formula.
The roots of the following quadratic equation is real and equal, find k.
3y2 + ky +12 = 0
The roots of the following quadratic equation is real and equal, find k.
kx (x – 2) + 6 = 0
Find the value of discriminant of the following equation.
2y2 − y + 2 = 0
Find the value of discriminant of the following equation.
\[\sqrt{5} x^2 - x - \sqrt{5} = 0\]
Two roots of quadratic equation is given ; frame the equation.
10 and –10
Two roots of quadratic equation is given ; frame the equation.
0 and 7
Find m if (m – 12) x2 + 2(m – 12) x + 2 = 0 has real and equal roots.
The sum of two roots of a quadratic equation is 5 and sum of their cubes is 35, find the equation.
Find quadratic equation such that its roots are square of sum of the roots and square of difference of the roots of equation \[2 x^2 + 2\left( p + q \right)x + p^2 + q^2 = 0\]
If α and β are the roots of the equation is 3x2 + x – 10 = 0, then the value of `1/α + 1/β` is ______.
If 2 and 5 are the roots of the quadratic equation, then complete the following activity to form quadratic equation:
Activity:
Let α = 2 and β = 5 are the roots of the quadratic equation.
Then quadratic equation is:
x2 − (α + β)x + αβ = 0
∴ `x^2 - (2 + square)x + square xx 5 = 0`
∴ `x^2 - square x + square = 0`