Advertisements
Advertisements
Question
Find the value of discriminant of the following equation.
\[\sqrt{5} x^2 - x - \sqrt{5} = 0\]
Solution
\[\sqrt{5} x^2 - x - \sqrt{5} = 0\]
For the quadratic equation, \[a x^2 + bx + c = 0\]
\[D = b^2 - 4ac\]
Here,
\[a = \sqrt{5}, b = - 1, c = - \sqrt{5}\]
\[D = \left( - 1 \right)^2 - 4 \times \left( \sqrt{5} \right) \times \left( - \sqrt{5} \right)\]
\[ = 1 + 20 = 21\]
APPEARS IN
RELATED QUESTIONS
Compare the given quadratic equation to the general form and write values of a, b, c.
x2 – 7x + 5 = 0
Compare the given quadratic equation to the general form and write values of a,b, c.
y2 = 7y
Solve using formula.
x2 + 6x + 5 = 0
Solve using formula.
x2 – 3x – 2 = 0
Solve using formula.
3m2 + 2m – 7 = 0
Solve using formula.
5m2 – 4m – 2 = 0
With the help of the flow chart given below solve the equation \[x^2 + 2\sqrt{3}x + 3 = 0\] using the formula.
The roots of the following quadratic equation is real and equal, find k.
3y2 + ky +12 = 0
The roots of the following quadratic equation is real and equal, find k.
kx (x – 2) + 6 = 0
Two roots of quadratic equation is given ; frame the equation.
10 and –10
Determine the nature of root of the quadratic equation.
\[3 x^2 - 5x + 7 = 0\]
Determine the nature of root of the quadratic equation.
\[\sqrt{3} x^2 + \sqrt{2}x - 2\sqrt{3} = 0\]
Determine the nature of root of the quadratic equation.
m2 - 2m + 1 = 0
If α and β are the roots of the equation is 3x2 + x – 10 = 0, then the value of `1/α + 1/β` is ______.
If 2 and 5 are the roots of the quadratic equation, then complete the following activity to form quadratic equation:
Activity:
Let α = 2 and β = 5 are the roots of the quadratic equation.
Then quadratic equation is:
x2 − (α + β)x + αβ = 0
∴ `x^2 - (2 + square)x + square xx 5 = 0`
∴ `x^2 - square x + square = 0`