Advertisements
Advertisements
Question
The roots of the following quadratic equation is real and equal, find k.
3y2 + ky +12 = 0
Solution
3y2 + ky +12 = 0
The roots of the given quadratic equation are real and equal. So, the discriminant will be 0.
\[b^2 - 4ac = 0\]
\[ \Rightarrow k^2 - 4 \times 3 \times 12 = 0\]
\[ \Rightarrow k^2 - 144 = 0\]
\[ \Rightarrow k^2 = 144\]
\[ \Rightarrow k = \pm 12\]
APPEARS IN
RELATED QUESTIONS
Compare the given quadratic equation to the general form and write values of a, b, c.
x2 – 7x + 5 = 0
Compare the given quadratic equation to the general form and write values of a,b, c.
2m2 = 5m – 5
Compare the given quadratic equation to the general form and write values of a,b, c.
y2 = 7y
Solve using formula.
x2 + 6x + 5 = 0
Solve using formula.
x2 – 3x – 2 = 0
Solve using formula.
3m2 + 2m – 7 = 0
With the help of the flow chart given below solve the equation \[x^2 + 2\sqrt{3}x + 3 = 0\] using the formula.
The roots of the following quadratic equation is real and equal, find k.
kx (x – 2) + 6 = 0
Find the value of discriminant of the following equation.
2y2 − y + 2 = 0
Find the value of discriminant of the following equation.
5m2 - m = 0
Find the value of discriminant of the following equation.
\[\sqrt{5} x^2 - x - \sqrt{5} = 0\]
Two roots of quadratic equation is given ; frame the equation.
10 and –10
Two roots of quadratic equation is given ; frame the equation.
\[1 - 3\sqrt{5} \text{ and } 1 + 3\sqrt{5}\]
Determine the nature of root of the quadratic equation.
\[3 x^2 - 5x + 7 = 0\]
Determine the nature of root of the quadratic equation.
\[\sqrt{3} x^2 + \sqrt{2}x - 2\sqrt{3} = 0\]
Determine the nature of root of the quadratic equation.
m2 - 2m + 1 = 0
The difference between squares of two numbers is 120. The square of smaller number is twice the greater number. Find the numbers.
If 2 and 5 are the roots of the quadratic equation, then complete the following activity to form quadratic equation:
Activity:
Let α = 2 and β = 5 are the roots of the quadratic equation.
Then quadratic equation is:
x2 − (α + β)x + αβ = 0
∴ `x^2 - (2 + square)x + square xx 5 = 0`
∴ `x^2 - square x + square = 0`