English

दिखाइए कि Z का न्यूनतम मान दो बिंदुओं से अधिक बिंदुओं पर घटित होता है। निम्न अवरोधों के अंतर्गत Z = x + y का अधिकतमीकरण कीजिए: x - y ≤ -1, -x + y ≤ 0, x, y ≥ 0. - Mathematics (गणित)

Advertisements
Advertisements

Question

दिखाइए कि Z का न्यूनतम मान दो बिंदुओं से अधिक बिंदुओं पर घटित होता है।

निम्न अवरोधों के अंतर्गत Z = x + y का अधिकतमीकरण कीजिए:

x - y ≤ -1, -x + y ≤ 0, x, y ≥ 0.

Sum

Solution

बाधाओं की प्रणाली इस प्रकार है:

x - y ≤ -1                ....(i)

- x + y ≤ 0            ....(ii)

x, y ≥ 0              ....(iii)

माना l1 : x - y = -1

l2 : -x + y = 0

यह क्षेत्र बंधित नहीं है और ना ही कोई क्षेत्र समान है अतः Z अधिकतम मात्रा संभव नहीं है।

shaalaa.com
रैखिक प्रोग्रामन समस्या और उसका गणितीय सूत्रीकरण - रैखिक प्रोग्रामन समस्याओं को हल करने की आलेखीय विधि
  Is there an error in this question or solution?
Chapter 12: रैखिक प्रोग्रामन - प्रश्नावली 12.1 [Page 529]

APPEARS IN

NCERT Mathematics - Part 1 and 2 [Hindi] Class 12
Chapter 12 रैखिक प्रोग्रामन
प्रश्नावली 12.1 | Q 10. | Page 529

RELATED QUESTIONS

ग्राफ़ीय विधि से निम्न रैखिक प्रोग्रामन समस्याओं को हल कीजिए:

निम्न अवरोधों के अंतर्गत Z = 5x + 3y का अधिकतमीकरण कीजिए:

3x + 5y ≤ 15, 5x + 2y ≤ 10, x ≥ 0, y ≥ 0


ग्राफ़ीय विधि से निम्न रैखिक प्रोग्रामन समस्याओं को हल कीजिए:

निम्न अवरोधों के अंतर्गत Z = 3x + 5y का न्यूनतमीकरण कीजिए:

x + 3y ≥ 3, x + y ≥ 2, x, y ≥ 0


ग्राफ़ीय विधि से निम्न रैखिक प्रोग्रामन समस्याओं को हल कीजिए:

निम्न अवरोधों के अंतर्गत Z = 3x + 2y का न्यूनतमीकरण कीजिए: 

x + 2y ≤ 10, 3x + y ≤ 15, x, y ≥ 0


ग्राफ़ीय विधि से निम्न रैखिक प्रोग्रामन समस्याओं को हल कीजिए:

निम्न अवरोधों के अंतर्गत Z = x + 2y का न्यूनतमीकरण कीजिए: 

2x + y ≥ 3, x + 2y ≥ 6, x, y ≥ 0


दिखाइए कि Z का न्यूनतम मान दो बिंदुओं से अधिक बिंदुओं पर घटित होता है।

निम्न अवरोधों के अंतर्गत Z = 5x + 10y का न्यूनतमीकरण तथा अधिकतमीकरण कीजिए:

x + 2y ≤ 120, x + y ≥ 60, x - 2y ≥ 0, x, y ≥ 0.


दिखाइए कि Z का न्यूनतम मान दो बिंदुओं से अधिक बिंदुओं पर घटित होता है।

निम्न अवरोधों के अंतर्गत Z = x + 2y का न्यूनतमीकरण तथा अधिकतमीकरण कीजिए:

x + 2y ≥ 100, 2x - y ≤ 0, 2x + y ≤ 200; x, y ≥ 0.


दिखाइए कि Z का न्यूनतम मान दो बिंदुओं से अधिक बिंदुओं पर घटित होता है।

निम्न अवरोधों के अंतर्गत Z = -x + 2y का अधिकतमीकरण कीजिए:

x ≥ 3, x + y ≥ 5, x + 2y ≥ 6, y ≥ 0.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×