English

दो विभिन्न रंगों के कपड़ों के 10 त्रिभुजाकार टुकड़ों की सिलाई करके एक छाता बनाया गया है (देखिए आकृति) प्रत्येक टुकड़े के माप 20 सेमी, 50 सेमी और 50 सेमी हैं। - Mathematics (गणित)

Advertisements
Advertisements

Question

दो विभिन्न रंगों के कपड़ों के 10 त्रिभुजाकार टुकड़ों की सिलाई करके एक छाता बनाया गया है (देखिए आकृति) प्रत्येक टुकड़े के माप 20 सेमी, 50 सेमी और 50 सेमी हैं। छाते में प्रत्येक रंग का कितना कपड़ा लगा है?

Sum

Solution

प्रत्येक त्रिकोणीय टुकड़े के लिए,

अर्ध-परिधि,

`s=(20+50+50)/2=60  cm`

हीरोन के सूत्र से,

`"त्रिभुज का क्षेत्रफल"=sqrt(s(s-a)(s-b)(s-c))`

`"त्रिभुज के प्रत्येक टुकड़े का क्षेत्रफल" =[sqrt(60(60-50)(60-50)(60-20))]cm^2`

                                          `=[sqrt(60(10)(10)(40))]cm^2`

                                          `=200sqrt6cm^2`

चूँकि दो अलग-अलग रंगों के कपड़ों से बने 5 त्रिभुजाकार टुकड़े हैं,

`"आवश्यक प्रत्येक कपड़े का क्षेत्रफल"=(5xx200sqrt6)cm^2=1000sqrt6cm^2`

shaalaa.com
त्रिभुज का क्षेत्रफल - हीरोन के सूत्र द्वारा
  Is there an error in this question or solution?
Chapter 12: हीरोन सूत्र - प्रश्नावली 12.2 [Page 248]

APPEARS IN

NCERT Mathematics [Hindi] Class 9
Chapter 12 हीरोन सूत्र
प्रश्नावली 12.2 | Q 6. | Page 248

RELATED QUESTIONS

किसी फ्लाईओवर (Flyover) की त्रिभुजाकार दीवार को विज्ञापनों के लिए प्रयोग किया जाता है। दीवार की भुजाओं की लंबाइयाँ 122 m, 22 m और 120 m हैं (देखिए आकृति)। इस विज्ञापन से प्रति वर्ष ₹ 5000 प्रति m2 की प्राप्ति होती है। एक कंपनी ने एक दीवार को विज्ञापन देने के लिए 3 महीने के लिए किराए पर लिया। उसने कुल कितना किराया दिया?


एक त्रिभुज की भुजाओं का अनुपात 12 : 17 : 25 है और उसका परिमाप 540 cm है। इस त्रिभुज का क्षेत्रफल ज्ञात कीजिए।


एक त्रिभुज की भुजाएँ 35 cm, 54 cm और 61 cm की हैं। इसके सबसे लंबे शीर्षलंब की लंबाई है


एक त्रिभुज ABC का क्षेत्रफल 8 cm2 है, जिसमें AB = AC = 4 cm है तथा ∠A = 90° है।


एक समबाहु त्रिभुज का क्षेत्रफल `20sqrt(3)` cm2 है, जिसकी प्रत्येक भुजा 8 cm है। 


यदि एक समचतुर्भुज की एक भुजा 10 cm और एक विकर्ण 16 cm है, तो उस समचतुर्भुज का क्षेत्रफल 96 cm2 है। 


एक त्रिभुजाकार मैदान जिसकी भुजाएँ 51 m, 37 m और 20 m हैं को 3 रु. प्रति m2 की दर से समतल कराने का व्यय 918 रु है।


एक समद्विबाहु त्रिभुज का परिमाप 32 cm है। एक बराबर भुजा और आधार का अनुपात 3 : 2 है। इस त्रिभुज का क्षेत्रफल ज्ञात कीजिए।


आकृति में दिए हुए समांतर चतुर्भुज का क्षेत्रफल ज्ञात कीजिए। साथ ही, शीर्ष A से भुजा DC पर शीर्षलंब की लंबाई ज्ञात कीजिए।


निम्नलिखित आकृति में दी हुई पतंग को बनाने के लिए प्रत्येक शेड (रंग) के कितने कागज की आवश्यकता होगी, यदि ABCD विकर्ण 44 cm वाला एक वर्ग है।


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×